A fixed point method to compute solvents of matrix polynomials
Mathematica Bohemica, Tome 135 (2010) no. 4, pp. 355-362.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Matrix polynomials play an important role in the theory of matrix differential equations. We develop a fixed point method to compute solutions of matrix polynomials equations, where the matricial elements of the matrix polynomial are considered separately as complex polynomials. Numerical examples illustrate the method presented.
DOI : 10.21136/MB.2010.140826
Classification : 34M99, 65H10
Keywords: fixed point method; matrix polynomial; matrix differential equation
@article{10_21136_MB_2010_140826,
     author = {Marcos, Fernando and Pereira, Edgar},
     title = {A fixed point method to compute solvents of matrix polynomials},
     journal = {Mathematica Bohemica},
     pages = {355--362},
     publisher = {mathdoc},
     volume = {135},
     number = {4},
     year = {2010},
     doi = {10.21136/MB.2010.140826},
     mrnumber = {2681009},
     zbl = {1224.34010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2010.140826/}
}
TY  - JOUR
AU  - Marcos, Fernando
AU  - Pereira, Edgar
TI  - A fixed point method to compute solvents of matrix polynomials
JO  - Mathematica Bohemica
PY  - 2010
SP  - 355
EP  - 362
VL  - 135
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2010.140826/
DO  - 10.21136/MB.2010.140826
LA  - en
ID  - 10_21136_MB_2010_140826
ER  - 
%0 Journal Article
%A Marcos, Fernando
%A Pereira, Edgar
%T A fixed point method to compute solvents of matrix polynomials
%J Mathematica Bohemica
%D 2010
%P 355-362
%V 135
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2010.140826/
%R 10.21136/MB.2010.140826
%G en
%F 10_21136_MB_2010_140826
Marcos, Fernando; Pereira, Edgar. A fixed point method to compute solvents of matrix polynomials. Mathematica Bohemica, Tome 135 (2010) no. 4, pp. 355-362. doi : 10.21136/MB.2010.140826. http://geodesic.mathdoc.fr/articles/10.21136/MB.2010.140826/

Cité par Sources :