Resolvents, integral equations, limit sets
Mathematica Bohemica, Tome 135 (2010) no. 4, pp. 337-354.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper we study a linear integral equation $x(t)=a(t)-\int ^t_0 C(t,s) x(s) {\rm d} s$, its resolvent equation $R(t,s)=C(t,s)-\int ^t_s C(t,u)R(u,s) {\rm d} u$, the variation of parameters formula $x(t)=a(t)-\int ^t_0 R(t,s)a(s) {\rm d} s$, and a perturbed equation. The kernel, $C(t,s)$, satisfies classical smoothness and sign conditions assumed in many real-world problems. We study the effects of perturbations of $C$ and also the limit sets of the resolvent. These results lead us to the study of nonlinear perturbations.
DOI : 10.21136/MB.2010.140824
Classification : 34D20
Keywords: integral equation; resolvent
@article{10_21136_MB_2010_140824,
     author = {Burton, T. A. and Dwiggins, D. P.},
     title = {Resolvents, integral equations, limit sets},
     journal = {Mathematica Bohemica},
     pages = {337--354},
     publisher = {mathdoc},
     volume = {135},
     number = {4},
     year = {2010},
     doi = {10.21136/MB.2010.140824},
     mrnumber = {2681008},
     zbl = {1224.45001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2010.140824/}
}
TY  - JOUR
AU  - Burton, T. A.
AU  - Dwiggins, D. P.
TI  - Resolvents, integral equations, limit sets
JO  - Mathematica Bohemica
PY  - 2010
SP  - 337
EP  - 354
VL  - 135
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2010.140824/
DO  - 10.21136/MB.2010.140824
LA  - en
ID  - 10_21136_MB_2010_140824
ER  - 
%0 Journal Article
%A Burton, T. A.
%A Dwiggins, D. P.
%T Resolvents, integral equations, limit sets
%J Mathematica Bohemica
%D 2010
%P 337-354
%V 135
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2010.140824/
%R 10.21136/MB.2010.140824
%G en
%F 10_21136_MB_2010_140824
Burton, T. A.; Dwiggins, D. P. Resolvents, integral equations, limit sets. Mathematica Bohemica, Tome 135 (2010) no. 4, pp. 337-354. doi : 10.21136/MB.2010.140824. http://geodesic.mathdoc.fr/articles/10.21136/MB.2010.140824/

Cité par Sources :