On the rational recursive sequence $ x_{n+1}=\dfrac {\alpha_0x_n+\alpha_1x_{n-l}+\alpha _2x_{n-k}} {\beta_0x_n+\beta_1x_{n-l}+\beta_2x_{n-k}}$
Mathematica Bohemica, Tome 135 (2010) no. 3, pp. 319-336.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The main objective of this paper is to study the boundedness character, the periodicity character, the convergence and the global stability of positive solutions of the difference equation $$ x_{n+1}=\frac {\alpha _0x_n+\alpha _1x_{n-l}+\alpha _2x_{n-k}} {\beta _0x_n+\beta _1x_{n-l}+\beta _2x_{n-k}}, \quad n=0,1,2,\dots $$ where the coefficients $\alpha _i,\beta _i\in (0,\infty )$ for $ i=0,1,2,$ and $l$, $k$ are positive integers. The initial conditions $ x_{-k}, \dots , x_{-l}, \dots , x_{-1}, x_0 $ are arbitrary positive real numbers such that $l$. Some numerical experiments are presented.
DOI : 10.21136/MB.2010.140707
Classification : 34C99, 39A10, 39A20, 39A22, 39A23, 39A30, 39A99, 65Q10
Keywords: difference equation; boundedness; period two solution; convergence; global stability
@article{10_21136_MB_2010_140707,
     author = {Zayed, E. M. E. and El-Moneam, M. A.},
     title = {On the rational recursive sequence $ x_{n+1}=\dfrac {\alpha_0x_n+\alpha_1x_{n-l}+\alpha _2x_{n-k}} {\beta_0x_n+\beta_1x_{n-l}+\beta_2x_{n-k}}$},
     journal = {Mathematica Bohemica},
     pages = {319--336},
     publisher = {mathdoc},
     volume = {135},
     number = {3},
     year = {2010},
     doi = {10.21136/MB.2010.140707},
     mrnumber = {2683642},
     zbl = {1224.39015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2010.140707/}
}
TY  - JOUR
AU  - Zayed, E. M. E.
AU  - El-Moneam, M. A.
TI  - On the rational recursive sequence $ x_{n+1}=\dfrac {\alpha_0x_n+\alpha_1x_{n-l}+\alpha _2x_{n-k}} {\beta_0x_n+\beta_1x_{n-l}+\beta_2x_{n-k}}$
JO  - Mathematica Bohemica
PY  - 2010
SP  - 319
EP  - 336
VL  - 135
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2010.140707/
DO  - 10.21136/MB.2010.140707
LA  - en
ID  - 10_21136_MB_2010_140707
ER  - 
%0 Journal Article
%A Zayed, E. M. E.
%A El-Moneam, M. A.
%T On the rational recursive sequence $ x_{n+1}=\dfrac {\alpha_0x_n+\alpha_1x_{n-l}+\alpha _2x_{n-k}} {\beta_0x_n+\beta_1x_{n-l}+\beta_2x_{n-k}}$
%J Mathematica Bohemica
%D 2010
%P 319-336
%V 135
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2010.140707/
%R 10.21136/MB.2010.140707
%G en
%F 10_21136_MB_2010_140707
Zayed, E. M. E.; El-Moneam, M. A. On the rational recursive sequence $ x_{n+1}=\dfrac {\alpha_0x_n+\alpha_1x_{n-l}+\alpha _2x_{n-k}} {\beta_0x_n+\beta_1x_{n-l}+\beta_2x_{n-k}}$. Mathematica Bohemica, Tome 135 (2010) no. 3, pp. 319-336. doi : 10.21136/MB.2010.140707. http://geodesic.mathdoc.fr/articles/10.21136/MB.2010.140707/

Cité par Sources :