Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
@article{10_21136_MB_2010_140707, author = {Zayed, E. M. E. and El-Moneam, M. A.}, title = {On the rational recursive sequence $ x_{n+1}=\dfrac {\alpha_0x_n+\alpha_1x_{n-l}+\alpha _2x_{n-k}} {\beta_0x_n+\beta_1x_{n-l}+\beta_2x_{n-k}}$}, journal = {Mathematica Bohemica}, pages = {319--336}, publisher = {mathdoc}, volume = {135}, number = {3}, year = {2010}, doi = {10.21136/MB.2010.140707}, mrnumber = {2683642}, zbl = {1224.39015}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2010.140707/} }
TY - JOUR AU - Zayed, E. M. E. AU - El-Moneam, M. A. TI - On the rational recursive sequence $ x_{n+1}=\dfrac {\alpha_0x_n+\alpha_1x_{n-l}+\alpha _2x_{n-k}} {\beta_0x_n+\beta_1x_{n-l}+\beta_2x_{n-k}}$ JO - Mathematica Bohemica PY - 2010 SP - 319 EP - 336 VL - 135 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2010.140707/ DO - 10.21136/MB.2010.140707 LA - en ID - 10_21136_MB_2010_140707 ER -
%0 Journal Article %A Zayed, E. M. E. %A El-Moneam, M. A. %T On the rational recursive sequence $ x_{n+1}=\dfrac {\alpha_0x_n+\alpha_1x_{n-l}+\alpha _2x_{n-k}} {\beta_0x_n+\beta_1x_{n-l}+\beta_2x_{n-k}}$ %J Mathematica Bohemica %D 2010 %P 319-336 %V 135 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2010.140707/ %R 10.21136/MB.2010.140707 %G en %F 10_21136_MB_2010_140707
Zayed, E. M. E.; El-Moneam, M. A. On the rational recursive sequence $ x_{n+1}=\dfrac {\alpha_0x_n+\alpha_1x_{n-l}+\alpha _2x_{n-k}} {\beta_0x_n+\beta_1x_{n-l}+\beta_2x_{n-k}}$. Mathematica Bohemica, Tome 135 (2010) no. 3, pp. 319-336. doi : 10.21136/MB.2010.140707. http://geodesic.mathdoc.fr/articles/10.21136/MB.2010.140707/
Cité par Sources :