The local metric dimension of a graph
Mathematica Bohemica, Tome 135 (2010) no. 3, pp. 239-255.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

For an ordered set $W= \{w_1,w_2,\ldots ,w_k\}$ of $k$ distinct vertices in a nontrivial connected graph $G$, the metric code of a vertex $v$ of $G$ with respect to $W$ is the $k$-vector \[ \mathop {\rm code}(v)= ( d(v,w_1),d(v,w_2),\cdots ,d(v,w_k) ) \] where $d(v,w_i)$ is the distance between $v$ and $w_i$ for $1\le i\le k$. The set $W$ is a local metric set of $G$ if $\mathop {\rm code}(u)\ne \mathop {\rm code}(v)$ for every pair $u,v$ of adjacent vertices of $G$. The minimum positive integer $k$ for which $G$ has a local metric $k$-set is the local metric dimension $\mathop {\rm lmd}(G)$ of $G$. A local metric set of $G$ of cardinality $\mathop {\rm lmd}(G)$ is a local metric basis of $G$. We characterize all nontrivial connected graphs of order $n$ having local metric dimension $1$, $n-2$, or $n-1$ and establish sharp bounds for the local metric dimension of a graph in terms of well-known graphical parameters. Several realization results are presented along with other results on the number of local metric bases of a connected graph.
DOI : 10.21136/MB.2010.140702
Classification : 05C12
Keywords: distance; local metric set; local metric dimension
@article{10_21136_MB_2010_140702,
     author = {Okamoto, Futaba and Phinezy, Bryan and Zhang, Ping},
     title = {The local metric dimension of a graph},
     journal = {Mathematica Bohemica},
     pages = {239--255},
     publisher = {mathdoc},
     volume = {135},
     number = {3},
     year = {2010},
     doi = {10.21136/MB.2010.140702},
     mrnumber = {2683637},
     zbl = {1224.05152},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2010.140702/}
}
TY  - JOUR
AU  - Okamoto, Futaba
AU  - Phinezy, Bryan
AU  - Zhang, Ping
TI  - The local metric dimension of a graph
JO  - Mathematica Bohemica
PY  - 2010
SP  - 239
EP  - 255
VL  - 135
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2010.140702/
DO  - 10.21136/MB.2010.140702
LA  - en
ID  - 10_21136_MB_2010_140702
ER  - 
%0 Journal Article
%A Okamoto, Futaba
%A Phinezy, Bryan
%A Zhang, Ping
%T The local metric dimension of a graph
%J Mathematica Bohemica
%D 2010
%P 239-255
%V 135
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2010.140702/
%R 10.21136/MB.2010.140702
%G en
%F 10_21136_MB_2010_140702
Okamoto, Futaba; Phinezy, Bryan; Zhang, Ping. The local metric dimension of a graph. Mathematica Bohemica, Tome 135 (2010) no. 3, pp. 239-255. doi : 10.21136/MB.2010.140702. http://geodesic.mathdoc.fr/articles/10.21136/MB.2010.140702/

Cité par Sources :