On Hölder regularity for vector-valued minimizers of quasilinear functionals
Mathematica Bohemica, Tome 135 (2010) no. 2, pp. 199-207.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We discuss the interior Hölder everywhere regularity for minimizers of quasilinear functionals of the type $$ \mathcal A(u;\Omega )=\int _{\Omega } A_{ij}^{\alpha \beta }(x,u) D_{\alpha }u^iD_{\beta }u^j\,{\rm d}x $$ whose gradients belong to the Morrey space $L^{2,n-2}(\Omega ,\mathbb R^{nN})$.
DOI : 10.21136/MB.2010.140697
Classification : 35J60
Keywords: quasilinear functional; minimizer; regularity; Campanato-Morrey space
@article{10_21136_MB_2010_140697,
     author = {Dan\v{e}\v{c}ek, Josef and Viszus, Eugen},
     title = {On {H\"older} regularity for vector-valued minimizers of quasilinear functionals},
     journal = {Mathematica Bohemica},
     pages = {199--207},
     publisher = {mathdoc},
     volume = {135},
     number = {2},
     year = {2010},
     doi = {10.21136/MB.2010.140697},
     mrnumber = {2723087},
     zbl = {1224.35116},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2010.140697/}
}
TY  - JOUR
AU  - Daněček, Josef
AU  - Viszus, Eugen
TI  - On Hölder regularity for vector-valued minimizers of quasilinear functionals
JO  - Mathematica Bohemica
PY  - 2010
SP  - 199
EP  - 207
VL  - 135
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2010.140697/
DO  - 10.21136/MB.2010.140697
LA  - en
ID  - 10_21136_MB_2010_140697
ER  - 
%0 Journal Article
%A Daněček, Josef
%A Viszus, Eugen
%T On Hölder regularity for vector-valued minimizers of quasilinear functionals
%J Mathematica Bohemica
%D 2010
%P 199-207
%V 135
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2010.140697/
%R 10.21136/MB.2010.140697
%G en
%F 10_21136_MB_2010_140697
Daněček, Josef; Viszus, Eugen. On Hölder regularity for vector-valued minimizers of quasilinear functionals. Mathematica Bohemica, Tome 135 (2010) no. 2, pp. 199-207. doi : 10.21136/MB.2010.140697. http://geodesic.mathdoc.fr/articles/10.21136/MB.2010.140697/

Cité par Sources :