On some nonlocal systems containing a parabolic PDE and a first order ODE
Mathematica Bohemica, Tome 135 (2010) no. 2, pp. 133-141.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Two models of reaction-diffusion are presented: a non-Fickian diffusion model described by a system of a parabolic PDE and a first order ODE, further, porosity-mineralogy changes in porous medium which is modelled by a system consisting of an ODE, a parabolic and an elliptic equation. Existence of weak solutions is shown by the Schauder fixed point theorem combined with the theory of monotone type operators.
DOI : 10.21136/MB.2010.140690
Classification : 35J60, 35K60
Keywords: Schauder fixed point theorem; system of parabolic and elliptic equations; monotone operator; reaction-diffusion
@article{10_21136_MB_2010_140690,
     author = {Besenyei, \'Ad\'am},
     title = {On some nonlocal systems containing a parabolic {PDE} and a first order {ODE}},
     journal = {Mathematica Bohemica},
     pages = {133--141},
     publisher = {mathdoc},
     volume = {135},
     number = {2},
     year = {2010},
     doi = {10.21136/MB.2010.140690},
     mrnumber = {2723080},
     zbl = {1224.35221},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2010.140690/}
}
TY  - JOUR
AU  - Besenyei, Ádám
TI  - On some nonlocal systems containing a parabolic PDE and a first order ODE
JO  - Mathematica Bohemica
PY  - 2010
SP  - 133
EP  - 141
VL  - 135
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2010.140690/
DO  - 10.21136/MB.2010.140690
LA  - en
ID  - 10_21136_MB_2010_140690
ER  - 
%0 Journal Article
%A Besenyei, Ádám
%T On some nonlocal systems containing a parabolic PDE and a first order ODE
%J Mathematica Bohemica
%D 2010
%P 133-141
%V 135
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2010.140690/
%R 10.21136/MB.2010.140690
%G en
%F 10_21136_MB_2010_140690
Besenyei, Ádám. On some nonlocal systems containing a parabolic PDE and a first order ODE. Mathematica Bohemica, Tome 135 (2010) no. 2, pp. 133-141. doi : 10.21136/MB.2010.140690. http://geodesic.mathdoc.fr/articles/10.21136/MB.2010.140690/

Cité par Sources :