A third order boundary value problem subject to nonlinear boundary conditions
Mathematica Bohemica, Tome 135 (2010) no. 2, pp. 113-121.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Utilizing the theory of fixed point index for compact maps, we establish new results on the existence of positive solutions for a certain third order boundary value problem. The boundary conditions that we study are of nonlocal type, involve Stieltjes integrals and are allowed to be nonlinear.
DOI : 10.21136/MB.2010.140687
Classification : 34B10, 34B18, 47H10, 47H30
Keywords: positive solution; nonlinear boundary conditions; third order problem; cone; fixed point index
@article{10_21136_MB_2010_140687,
     author = {Infante, Gennaro and Pietramala, Paolamaria},
     title = {A third order boundary value problem subject to nonlinear boundary conditions},
     journal = {Mathematica Bohemica},
     pages = {113--121},
     publisher = {mathdoc},
     volume = {135},
     number = {2},
     year = {2010},
     doi = {10.21136/MB.2010.140687},
     mrnumber = {2723078},
     zbl = {1224.34036},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2010.140687/}
}
TY  - JOUR
AU  - Infante, Gennaro
AU  - Pietramala, Paolamaria
TI  - A third order boundary value problem subject to nonlinear boundary conditions
JO  - Mathematica Bohemica
PY  - 2010
SP  - 113
EP  - 121
VL  - 135
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2010.140687/
DO  - 10.21136/MB.2010.140687
LA  - en
ID  - 10_21136_MB_2010_140687
ER  - 
%0 Journal Article
%A Infante, Gennaro
%A Pietramala, Paolamaria
%T A third order boundary value problem subject to nonlinear boundary conditions
%J Mathematica Bohemica
%D 2010
%P 113-121
%V 135
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2010.140687/
%R 10.21136/MB.2010.140687
%G en
%F 10_21136_MB_2010_140687
Infante, Gennaro; Pietramala, Paolamaria. A third order boundary value problem subject to nonlinear boundary conditions. Mathematica Bohemica, Tome 135 (2010) no. 2, pp. 113-121. doi : 10.21136/MB.2010.140687. http://geodesic.mathdoc.fr/articles/10.21136/MB.2010.140687/

Cité par Sources :