Asymptotic properties of solutions of higher order difference equations
Mathematica Bohemica, Tome 135 (2010) no. 1, pp. 29-39.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Asymptotic properties of solutions of the difference equation of the form \[ \Delta ^m x_n=a_n\varphi (x_{\tau _1(n)},\dots ,x_{\tau _k(n)})+b_n \] are studied. Conditions under which every (every bounded) solution of the equation $\Delta ^my_n=b_n$ is asymptotically equivalent to some solution of the above equation are obtained.\\
DOI : 10.21136/MB.2010.140680
Classification : 39A10
Keywords: difference equation; asymptotic behavior
@article{10_21136_MB_2010_140680,
     author = {Migda, Janusz},
     title = {Asymptotic properties of solutions of higher order difference equations},
     journal = {Mathematica Bohemica},
     pages = {29--39},
     publisher = {mathdoc},
     volume = {135},
     number = {1},
     year = {2010},
     doi = {10.21136/MB.2010.140680},
     mrnumber = {2643353},
     zbl = {1224.39021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2010.140680/}
}
TY  - JOUR
AU  - Migda, Janusz
TI  - Asymptotic properties of solutions of higher order difference equations
JO  - Mathematica Bohemica
PY  - 2010
SP  - 29
EP  - 39
VL  - 135
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2010.140680/
DO  - 10.21136/MB.2010.140680
LA  - en
ID  - 10_21136_MB_2010_140680
ER  - 
%0 Journal Article
%A Migda, Janusz
%T Asymptotic properties of solutions of higher order difference equations
%J Mathematica Bohemica
%D 2010
%P 29-39
%V 135
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2010.140680/
%R 10.21136/MB.2010.140680
%G en
%F 10_21136_MB_2010_140680
Migda, Janusz. Asymptotic properties of solutions of higher order difference equations. Mathematica Bohemica, Tome 135 (2010) no. 1, pp. 29-39. doi : 10.21136/MB.2010.140680. http://geodesic.mathdoc.fr/articles/10.21136/MB.2010.140680/

Cité par Sources :