Extended Weyl type theorems
Mathematica Bohemica, Tome 134 (2009) no. 4, pp. 369-378.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

An operator $T$ acting on a Banach space $X$ possesses property $({\rm gw})$ if $\sigma _a(T)\setminus \sigma _{{\rm SBF}_+^-}(T)= E(T), $ where $\sigma _a(T)$ is the approximate point spectrum of $T$, $\sigma _{{\rm SBF} _+^-}(T)$ is the essential semi-B-Fredholm spectrum of $T$ and $E(T)$ is the set of all isolated eigenvalues of $T.$ In this paper we introduce and study two new properties $({\rm b})$ and $({\rm gb})$ in connection with Weyl type theorems, which are analogous respectively to Browder's theorem and generalized Browder's theorem. \endgraf Among other, we prove that if $T$ is a bounded linear operator acting on a Banach space $X$, then property $({\rm gw})$ holds for $T$ if and only if property $({\rm gb})$ holds for $T$ and $E(T)=\Pi (T),$ where $\Pi (T)$ is the set of all poles of the resolvent of $T.$
DOI : 10.21136/MB.2009.140669
Classification : 47A10, 47A11, 47A53
Keywords: B-Fredholm operator; Browder's theorem; generalized Browder's theorem; property $({\rm b})$; property $({\rm gb})$
@article{10_21136_MB_2009_140669,
     author = {Berkani, M. and Zariouh, H.},
     title = {Extended {Weyl} type theorems},
     journal = {Mathematica Bohemica},
     pages = {369--378},
     publisher = {mathdoc},
     volume = {134},
     number = {4},
     year = {2009},
     doi = {10.21136/MB.2009.140669},
     mrnumber = {2597232},
     zbl = {1211.47011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2009.140669/}
}
TY  - JOUR
AU  - Berkani, M.
AU  - Zariouh, H.
TI  - Extended Weyl type theorems
JO  - Mathematica Bohemica
PY  - 2009
SP  - 369
EP  - 378
VL  - 134
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2009.140669/
DO  - 10.21136/MB.2009.140669
LA  - en
ID  - 10_21136_MB_2009_140669
ER  - 
%0 Journal Article
%A Berkani, M.
%A Zariouh, H.
%T Extended Weyl type theorems
%J Mathematica Bohemica
%D 2009
%P 369-378
%V 134
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2009.140669/
%R 10.21136/MB.2009.140669
%G en
%F 10_21136_MB_2009_140669
Berkani, M.; Zariouh, H. Extended Weyl type theorems. Mathematica Bohemica, Tome 134 (2009) no. 4, pp. 369-378. doi : 10.21136/MB.2009.140669. http://geodesic.mathdoc.fr/articles/10.21136/MB.2009.140669/

Cité par Sources :