On some cohomological properties of the Lie algebra of Euclidean motions
Mathematica Bohemica, Tome 134 (2009) no. 4, pp. 337-348.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The external derivative $d$ on differential manifolds inspires graded operators on complexes of spaces $\Lambda ^rg^\ast $, $\Lambda ^rg^\ast \otimes g$, $\Lambda ^rg^\ast \otimes g^\ast $ stated by $g^\ast $ dual to a Lie algebra $g$. Cohomological properties of these operators are studied in the case of the Lie algebra $g=se( 3 )$ of the Lie group of Euclidean motions.
DOI : 10.21136/MB.2009.140665
Classification : 22E60, 22E70, 70B15
Keywords: Lie group; Lie algebra; dual space; twist; wrench; cohomology
@article{10_21136_MB_2009_140665,
     author = {Bak\v{s}ov\'a, Marta and Dekr\'et, Anton},
     title = {On some cohomological properties of the {Lie} algebra of {Euclidean} motions},
     journal = {Mathematica Bohemica},
     pages = {337--348},
     publisher = {mathdoc},
     volume = {134},
     number = {4},
     year = {2009},
     doi = {10.21136/MB.2009.140665},
     mrnumber = {2597229},
     zbl = {1212.70005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2009.140665/}
}
TY  - JOUR
AU  - Bakšová, Marta
AU  - Dekrét, Anton
TI  - On some cohomological properties of the Lie algebra of Euclidean motions
JO  - Mathematica Bohemica
PY  - 2009
SP  - 337
EP  - 348
VL  - 134
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2009.140665/
DO  - 10.21136/MB.2009.140665
LA  - en
ID  - 10_21136_MB_2009_140665
ER  - 
%0 Journal Article
%A Bakšová, Marta
%A Dekrét, Anton
%T On some cohomological properties of the Lie algebra of Euclidean motions
%J Mathematica Bohemica
%D 2009
%P 337-348
%V 134
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2009.140665/
%R 10.21136/MB.2009.140665
%G en
%F 10_21136_MB_2009_140665
Bakšová, Marta; Dekrét, Anton. On some cohomological properties of the Lie algebra of Euclidean motions. Mathematica Bohemica, Tome 134 (2009) no. 4, pp. 337-348. doi : 10.21136/MB.2009.140665. http://geodesic.mathdoc.fr/articles/10.21136/MB.2009.140665/

Cité par Sources :