The rank of a commutative semigroup
Mathematica Bohemica, Tome 134 (2009) no. 3, pp. 301-318.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The concept of rank of a commutative cancellative semigroup is extended to all commutative semigroups $S$ by defining $\mathop{\rm rank}S$ as the supremum of cardinalities of finite independent subsets of $S$. Representing such a semigroup $S$ as a semilattice $Y$ of (archimedean) components $S_\alpha $, we prove that $\mathop{\rm rank}S$ is the supremum of ranks of various $S_\alpha $. Representing a commutative separative semigroup $S$ as a semilattice of its (cancellative) archimedean components, the main result of the paper provides several characterizations of $\mathop{\rm rank}S$; in particular if $\mathop{\rm rank}S$ is finite. Subdirect products of a semilattice and a commutative cancellative semigroup are treated briefly. We give a classification of all commutative separative semigroups which admit a generating set of one or two elements, and compute their ranks.
DOI : 10.21136/MB.2009.140663
Classification : 20M05, 20M10, 20M14
Keywords: semigroup; commutative semigroup; independent subset; rank; separative semigroup; power cancellative semigroup; archimedean component
@article{10_21136_MB_2009_140663,
     author = {Cegarra, Antonio M. and Petrich, Mario},
     title = {The rank of a commutative semigroup},
     journal = {Mathematica Bohemica},
     pages = {301--318},
     publisher = {mathdoc},
     volume = {134},
     number = {3},
     year = {2009},
     doi = {10.21136/MB.2009.140663},
     mrnumber = {2561308},
     zbl = {1197.20051},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2009.140663/}
}
TY  - JOUR
AU  - Cegarra, Antonio M.
AU  - Petrich, Mario
TI  - The rank of a commutative semigroup
JO  - Mathematica Bohemica
PY  - 2009
SP  - 301
EP  - 318
VL  - 134
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2009.140663/
DO  - 10.21136/MB.2009.140663
LA  - en
ID  - 10_21136_MB_2009_140663
ER  - 
%0 Journal Article
%A Cegarra, Antonio M.
%A Petrich, Mario
%T The rank of a commutative semigroup
%J Mathematica Bohemica
%D 2009
%P 301-318
%V 134
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2009.140663/
%R 10.21136/MB.2009.140663
%G en
%F 10_21136_MB_2009_140663
Cegarra, Antonio M.; Petrich, Mario. The rank of a commutative semigroup. Mathematica Bohemica, Tome 134 (2009) no. 3, pp. 301-318. doi : 10.21136/MB.2009.140663. http://geodesic.mathdoc.fr/articles/10.21136/MB.2009.140663/

Cité par Sources :