Generalized Hermitean ultradistributions
Mathematica Bohemica, Tome 134 (2009) no. 3, pp. 225-253.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper we define, by duality methods, a space of ultradistributions $\G _\omega ' (\Bbb R ^N)$. This space contains all tempered distributions and is closed under derivatives, complex translations and Fourier transform. Moreover, it contains some multipole series and all entire functions of order less than two. The method used to construct $\Bbb G _\omega ' (\Bbb R ^N)$ led us to a detailed study, presented at the beginning of the paper, of the duals of infinite dimensional locally convex spaces that are inductive limits of finite dimensional subspaces.
DOI : 10.21136/MB.2009.140658
Classification : 32A25, 32A45, 46F05
Keywords: distribution; multipole series; Fourier transform; complex translation; ultradistribution
@article{10_21136_MB_2009_140658,
     author = {Andrade, C. and Loura, L.},
     title = {Generalized {Hermitean} ultradistributions},
     journal = {Mathematica Bohemica},
     pages = {225--253},
     publisher = {mathdoc},
     volume = {134},
     number = {3},
     year = {2009},
     doi = {10.21136/MB.2009.140658},
     mrnumber = {2561304},
     zbl = {1212.46058},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2009.140658/}
}
TY  - JOUR
AU  - Andrade, C.
AU  - Loura, L.
TI  - Generalized Hermitean ultradistributions
JO  - Mathematica Bohemica
PY  - 2009
SP  - 225
EP  - 253
VL  - 134
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2009.140658/
DO  - 10.21136/MB.2009.140658
LA  - en
ID  - 10_21136_MB_2009_140658
ER  - 
%0 Journal Article
%A Andrade, C.
%A Loura, L.
%T Generalized Hermitean ultradistributions
%J Mathematica Bohemica
%D 2009
%P 225-253
%V 134
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2009.140658/
%R 10.21136/MB.2009.140658
%G en
%F 10_21136_MB_2009_140658
Andrade, C.; Loura, L. Generalized Hermitean ultradistributions. Mathematica Bohemica, Tome 134 (2009) no. 3, pp. 225-253. doi : 10.21136/MB.2009.140658. http://geodesic.mathdoc.fr/articles/10.21136/MB.2009.140658/

Cité par Sources :