The multiset chromatic number of a graph
Mathematica Bohemica, Tome 134 (2009) no. 2, pp. 191-209.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A vertex coloring of a graph $G$ is a multiset coloring if the multisets of colors of the neighbors of every two adjacent vertices are different. The minimum $k$ for which $G$ has a multiset $k$-coloring is the multiset chromatic number $\chi _m(G)$ of $G$. For every graph $G$, $\chi _m(G)$ is bounded above by its chromatic number $\chi (G)$. The multiset chromatic number is determined for every complete multipartite graph as well as for cycles and their squares, cubes, and fourth powers. It is conjectured that for each $k\ge 3$, there exist sufficiently large integers $n$ such that $\chi _m(C_n^k)= 3$. It is determined for which pairs $k, n$ of integers with $1\le k\le n$ and $n\ge 3$, there exists a connected graph $G$ of order $n$ with $\chi _m(G)= k$. For $k= n-2$, all such graphs $G$ are determined.
DOI : 10.21136/MB.2009.140654
Classification : 05C15
Keywords: vertex coloring; multiset coloring; neighbor-distinguishing coloring
@article{10_21136_MB_2009_140654,
     author = {Chartrand, Gary and Okamoto, Futaba and Salehi, Ebrahim and Zhang, Ping},
     title = {The multiset chromatic number of a graph},
     journal = {Mathematica Bohemica},
     pages = {191--209},
     publisher = {mathdoc},
     volume = {134},
     number = {2},
     year = {2009},
     doi = {10.21136/MB.2009.140654},
     mrnumber = {2535147},
     zbl = {1212.05071},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2009.140654/}
}
TY  - JOUR
AU  - Chartrand, Gary
AU  - Okamoto, Futaba
AU  - Salehi, Ebrahim
AU  - Zhang, Ping
TI  - The multiset chromatic number of a graph
JO  - Mathematica Bohemica
PY  - 2009
SP  - 191
EP  - 209
VL  - 134
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2009.140654/
DO  - 10.21136/MB.2009.140654
LA  - en
ID  - 10_21136_MB_2009_140654
ER  - 
%0 Journal Article
%A Chartrand, Gary
%A Okamoto, Futaba
%A Salehi, Ebrahim
%A Zhang, Ping
%T The multiset chromatic number of a graph
%J Mathematica Bohemica
%D 2009
%P 191-209
%V 134
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2009.140654/
%R 10.21136/MB.2009.140654
%G en
%F 10_21136_MB_2009_140654
Chartrand, Gary; Okamoto, Futaba; Salehi, Ebrahim; Zhang, Ping. The multiset chromatic number of a graph. Mathematica Bohemica, Tome 134 (2009) no. 2, pp. 191-209. doi : 10.21136/MB.2009.140654. http://geodesic.mathdoc.fr/articles/10.21136/MB.2009.140654/

Cité par Sources :