Optimal sublinear inequalities involving geometric and power means
Mathematica Bohemica, Tome 134 (2009) no. 2, pp. 133-149.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

There are many relations involving the geometric means $G_n(x)$ and power means $[A_n(x^{\gamma })]^{1/\gamma }$ for positive $n$-vectors $x$. Some of them assume the form of inequalities involving parameters. There then is the question of sharpness, which is quite difficult in general. In this paper we are concerned with inequalities of the form $(1-\lambda )G_n^{\gamma }(x)+\lambda A_n^{\gamma }(x)\geq A_n(x^{\gamma })$ and $(1-\lambda )G_n^{\gamma }(x)+\lambda A_n^{\gamma }(x)\leq A_n(x^{\gamma })$ with parameters $\lambda \in \Bbb R$ and $\gamma \in (0,1).$ We obtain a necessary and sufficient condition for the former inequality, and a sharp condition for the latter. Several applications of our results are also demonstrated.
DOI : 10.21136/MB.2009.140649
Classification : 26D15, 26E60
Keywords: geometric mean; power mean; Hermitian matrix; permanent of a complex; simplex; arithmetic-geometric inequality
@article{10_21136_MB_2009_140649,
     author = {Wen, Jiajin and Cheng, Sui Sun and Gao, Chaobang},
     title = {Optimal sublinear inequalities involving geometric and power means},
     journal = {Mathematica Bohemica},
     pages = {133--149},
     publisher = {mathdoc},
     volume = {134},
     number = {2},
     year = {2009},
     doi = {10.21136/MB.2009.140649},
     mrnumber = {2535142},
     zbl = {1212.26079},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2009.140649/}
}
TY  - JOUR
AU  - Wen, Jiajin
AU  - Cheng, Sui Sun
AU  - Gao, Chaobang
TI  - Optimal sublinear inequalities involving geometric and power means
JO  - Mathematica Bohemica
PY  - 2009
SP  - 133
EP  - 149
VL  - 134
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2009.140649/
DO  - 10.21136/MB.2009.140649
LA  - en
ID  - 10_21136_MB_2009_140649
ER  - 
%0 Journal Article
%A Wen, Jiajin
%A Cheng, Sui Sun
%A Gao, Chaobang
%T Optimal sublinear inequalities involving geometric and power means
%J Mathematica Bohemica
%D 2009
%P 133-149
%V 134
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2009.140649/
%R 10.21136/MB.2009.140649
%G en
%F 10_21136_MB_2009_140649
Wen, Jiajin; Cheng, Sui Sun; Gao, Chaobang. Optimal sublinear inequalities involving geometric and power means. Mathematica Bohemica, Tome 134 (2009) no. 2, pp. 133-149. doi : 10.21136/MB.2009.140649. http://geodesic.mathdoc.fr/articles/10.21136/MB.2009.140649/

Cité par Sources :