Primeness and semiprimeness in posets
Mathematica Bohemica, Tome 134 (2009) no. 1, pp. 19-30.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The concept of a semiprime ideal in a poset is introduced. Characterizations of semiprime ideals in a poset $P$ as well as characterizations of a semiprime ideal to be prime in $P$ are obtained in terms of meet-irreducible elements of the lattice of ideals of $P$ and in terms of maximality of ideals. Also, prime ideals in a poset are characterized.
DOI : 10.21136/MB.2009.140636
Classification : 06B10
Keywords: semiprime ideal; prime ideal; meet-irreducible element; $I$-atom
@article{10_21136_MB_2009_140636,
     author = {Kharat, Vilas S. and Mokbel, Khalid A.},
     title = {Primeness and semiprimeness in posets},
     journal = {Mathematica Bohemica},
     pages = {19--30},
     publisher = {mathdoc},
     volume = {134},
     number = {1},
     year = {2009},
     doi = {10.21136/MB.2009.140636},
     mrnumber = {2504684},
     zbl = {1212.06001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2009.140636/}
}
TY  - JOUR
AU  - Kharat, Vilas S.
AU  - Mokbel, Khalid A.
TI  - Primeness and semiprimeness in posets
JO  - Mathematica Bohemica
PY  - 2009
SP  - 19
EP  - 30
VL  - 134
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2009.140636/
DO  - 10.21136/MB.2009.140636
LA  - en
ID  - 10_21136_MB_2009_140636
ER  - 
%0 Journal Article
%A Kharat, Vilas S.
%A Mokbel, Khalid A.
%T Primeness and semiprimeness in posets
%J Mathematica Bohemica
%D 2009
%P 19-30
%V 134
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2009.140636/
%R 10.21136/MB.2009.140636
%G en
%F 10_21136_MB_2009_140636
Kharat, Vilas S.; Mokbel, Khalid A. Primeness and semiprimeness in posets. Mathematica Bohemica, Tome 134 (2009) no. 1, pp. 19-30. doi : 10.21136/MB.2009.140636. http://geodesic.mathdoc.fr/articles/10.21136/MB.2009.140636/

Cité par Sources :