Tribonacci modulo $p^t$
Mathematica Bohemica, Tome 133 (2008) no. 3, pp. 267-288.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Our research was inspired by the relations between the primitive periods of sequences obtained by reducing Tribonacci sequence by a given prime modulus $p$ and by its powers $p^t$, which were deduced by M. E. Waddill. In this paper we derive similar results for the case of a Tribonacci sequence that starts with an arbitrary triple of integers.
DOI : 10.21136/MB.2008.140617
Classification : 11B39, 11B50
Keywords: Tribonacci; modular periodicity; periodic sequence
@article{10_21136_MB_2008_140617,
     author = {Kla\v{s}ka, Ji\v{r}{\'\i}},
     title = {Tribonacci modulo $p^t$},
     journal = {Mathematica Bohemica},
     pages = {267--288},
     publisher = {mathdoc},
     volume = {133},
     number = {3},
     year = {2008},
     doi = {10.21136/MB.2008.140617},
     mrnumber = {2494781},
     zbl = {1174.11021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2008.140617/}
}
TY  - JOUR
AU  - Klaška, Jiří
TI  - Tribonacci modulo $p^t$
JO  - Mathematica Bohemica
PY  - 2008
SP  - 267
EP  - 288
VL  - 133
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2008.140617/
DO  - 10.21136/MB.2008.140617
LA  - en
ID  - 10_21136_MB_2008_140617
ER  - 
%0 Journal Article
%A Klaška, Jiří
%T Tribonacci modulo $p^t$
%J Mathematica Bohemica
%D 2008
%P 267-288
%V 133
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2008.140617/
%R 10.21136/MB.2008.140617
%G en
%F 10_21136_MB_2008_140617
Klaška, Jiří. Tribonacci modulo $p^t$. Mathematica Bohemica, Tome 133 (2008) no. 3, pp. 267-288. doi : 10.21136/MB.2008.140617. http://geodesic.mathdoc.fr/articles/10.21136/MB.2008.140617/

Cité par Sources :