Urysohn’s lemma, gluing lemma and contraction$^*$ mapping theorem for fuzzy metric spaces
Mathematica Bohemica, Tome 133 (2008) no. 2, pp. 179-185.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper the concept of a fuzzy contraction$^*$ mapping on a fuzzy metric space is introduced and it is proved that every fuzzy contraction$^*$ mapping on a complete fuzzy metric space has a unique fixed point.
DOI : 10.21136/MB.2008.134052
Classification : 03E72, 54A40, 54E35, 54H25
Keywords: fuzzy contraction mapping; fuzzy continuous mapping
@article{10_21136_MB_2008_134052,
     author = {Roja, E. and Uma, M. K. and Balasubramanian, G.},
     title = {Urysohn{\textquoteright}s lemma, gluing lemma and contraction$^*$ mapping theorem for fuzzy metric spaces},
     journal = {Mathematica Bohemica},
     pages = {179--185},
     publisher = {mathdoc},
     volume = {133},
     number = {2},
     year = {2008},
     doi = {10.21136/MB.2008.134052},
     mrnumber = {2428313},
     zbl = {1199.54243},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2008.134052/}
}
TY  - JOUR
AU  - Roja, E.
AU  - Uma, M. K.
AU  - Balasubramanian, G.
TI  - Urysohn’s lemma, gluing lemma and contraction$^*$ mapping theorem for fuzzy metric spaces
JO  - Mathematica Bohemica
PY  - 2008
SP  - 179
EP  - 185
VL  - 133
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2008.134052/
DO  - 10.21136/MB.2008.134052
LA  - en
ID  - 10_21136_MB_2008_134052
ER  - 
%0 Journal Article
%A Roja, E.
%A Uma, M. K.
%A Balasubramanian, G.
%T Urysohn’s lemma, gluing lemma and contraction$^*$ mapping theorem for fuzzy metric spaces
%J Mathematica Bohemica
%D 2008
%P 179-185
%V 133
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2008.134052/
%R 10.21136/MB.2008.134052
%G en
%F 10_21136_MB_2008_134052
Roja, E.; Uma, M. K.; Balasubramanian, G. Urysohn’s lemma, gluing lemma and contraction$^*$ mapping theorem for fuzzy metric spaces. Mathematica Bohemica, Tome 133 (2008) no. 2, pp. 179-185. doi : 10.21136/MB.2008.134052. http://geodesic.mathdoc.fr/articles/10.21136/MB.2008.134052/

Cité par Sources :