Existence of positive solution of a singular partial differential equation
Mathematica Bohemica, Tome 133 (2008) no. 1, pp. 29-40.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Motivated by Vityuk and Golushkov (2004), using the Schauder Fixed Point Theorem and the Contraction Principle, we consider existence and uniqueness of positive solution of a singular partial fractional differential equation in a Banach space concerning with fractional derivative.
DOI : 10.21136/MB.2008.133943
Classification : 26A33, 34A12, 35F15
Keywords: mixed Riemann-Liouville fractional derivative; function space concerning fractional derivative; existence and uniqueness; positive solution; fixed point theorem
@article{10_21136_MB_2008_133943,
     author = {Zhang, Shuqin},
     title = {Existence of positive solution of a singular partial differential equation},
     journal = {Mathematica Bohemica},
     pages = {29--40},
     publisher = {mathdoc},
     volume = {133},
     number = {1},
     year = {2008},
     doi = {10.21136/MB.2008.133943},
     mrnumber = {2400149},
     zbl = {1199.26027},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2008.133943/}
}
TY  - JOUR
AU  - Zhang, Shuqin
TI  - Existence of positive solution of a singular partial differential equation
JO  - Mathematica Bohemica
PY  - 2008
SP  - 29
EP  - 40
VL  - 133
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2008.133943/
DO  - 10.21136/MB.2008.133943
LA  - en
ID  - 10_21136_MB_2008_133943
ER  - 
%0 Journal Article
%A Zhang, Shuqin
%T Existence of positive solution of a singular partial differential equation
%J Mathematica Bohemica
%D 2008
%P 29-40
%V 133
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2008.133943/
%R 10.21136/MB.2008.133943
%G en
%F 10_21136_MB_2008_133943
Zhang, Shuqin. Existence of positive solution of a singular partial differential equation. Mathematica Bohemica, Tome 133 (2008) no. 1, pp. 29-40. doi : 10.21136/MB.2008.133943. http://geodesic.mathdoc.fr/articles/10.21136/MB.2008.133943/

Cité par Sources :