Bounds for frequencies of residues of second-order recurrences modulo $p^r$
Mathematica Bohemica, Tome 132 (2007) no. 2, pp. 137-175.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The authors examine the frequency distribution of second-order recurrence sequences that are not $p$-regular, for an odd prime $p$, and apply their results to compute bounds for the frequencies of $p$-singular elements of $p$-regular second-order recurrences modulo powers of the prime $p$. The authors’ results have application to the $p$-stability of second-order recurrence sequences.
DOI : 10.21136/MB.2007.134189
Classification : 11A25, 11A51, 11B37, 11B39, 11B50
Keywords: Lucas; Fibonacci; stability; uniform distribution; recurrence
@article{10_21136_MB_2007_134189,
     author = {Carlip, Walter and Somer, Lawrence},
     title = {Bounds for frequencies of residues of second-order recurrences modulo $p^r$},
     journal = {Mathematica Bohemica},
     pages = {137--175},
     publisher = {mathdoc},
     volume = {132},
     number = {2},
     year = {2007},
     doi = {10.21136/MB.2007.134189},
     mrnumber = {2338803},
     zbl = {1174.11014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2007.134189/}
}
TY  - JOUR
AU  - Carlip, Walter
AU  - Somer, Lawrence
TI  - Bounds for frequencies of residues of second-order recurrences modulo $p^r$
JO  - Mathematica Bohemica
PY  - 2007
SP  - 137
EP  - 175
VL  - 132
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2007.134189/
DO  - 10.21136/MB.2007.134189
LA  - en
ID  - 10_21136_MB_2007_134189
ER  - 
%0 Journal Article
%A Carlip, Walter
%A Somer, Lawrence
%T Bounds for frequencies of residues of second-order recurrences modulo $p^r$
%J Mathematica Bohemica
%D 2007
%P 137-175
%V 132
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2007.134189/
%R 10.21136/MB.2007.134189
%G en
%F 10_21136_MB_2007_134189
Carlip, Walter; Somer, Lawrence. Bounds for frequencies of residues of second-order recurrences modulo $p^r$. Mathematica Bohemica, Tome 132 (2007) no. 2, pp. 137-175. doi : 10.21136/MB.2007.134189. http://geodesic.mathdoc.fr/articles/10.21136/MB.2007.134189/

Cité par Sources :