On solutions of the difference equation $x_{n+1}=x_{n-3}/(-1+x_{n}x_{n-1}x_{n-2}x_{n-3})$
Mathematica Bohemica, Tome 132 (2007) no. 3, pp. 257-261.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We study the solutions and attractivity of the difference equation $x_{n+1}={x_{n-3}}/{(-1+x_{n}x_{n-1}x_{n-2}x_{n-3})}$ for $n=0,1,2,\dots $ where $x_{-3},x_{-2},x_{-1}$ and $x_{0}$ are real numbers such that $x_{0}x_{-1}x_{-2}x_{-3}\ne 1.$
DOI : 10.21136/MB.2007.134123
Classification : 39A11, 39A20
Keywords: difference equation; recursive sequence; solutions; equilibrium point
@article{10_21136_MB_2007_134123,
     author = {Cinar, Cengiz and Karatas, Ramazan and Yal\c{c}{\i}nkaya, Ibrahim},
     title = {On solutions of the difference equation $x_{n+1}=x_{n-3}/(-1+x_{n}x_{n-1}x_{n-2}x_{n-3})$},
     journal = {Mathematica Bohemica},
     pages = {257--261},
     publisher = {mathdoc},
     volume = {132},
     number = {3},
     year = {2007},
     doi = {10.21136/MB.2007.134123},
     mrnumber = {2355658},
     zbl = {1174.39303},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2007.134123/}
}
TY  - JOUR
AU  - Cinar, Cengiz
AU  - Karatas, Ramazan
AU  - Yalçınkaya, Ibrahim
TI  - On solutions of the difference equation $x_{n+1}=x_{n-3}/(-1+x_{n}x_{n-1}x_{n-2}x_{n-3})$
JO  - Mathematica Bohemica
PY  - 2007
SP  - 257
EP  - 261
VL  - 132
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2007.134123/
DO  - 10.21136/MB.2007.134123
LA  - en
ID  - 10_21136_MB_2007_134123
ER  - 
%0 Journal Article
%A Cinar, Cengiz
%A Karatas, Ramazan
%A Yalçınkaya, Ibrahim
%T On solutions of the difference equation $x_{n+1}=x_{n-3}/(-1+x_{n}x_{n-1}x_{n-2}x_{n-3})$
%J Mathematica Bohemica
%D 2007
%P 257-261
%V 132
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2007.134123/
%R 10.21136/MB.2007.134123
%G en
%F 10_21136_MB_2007_134123
Cinar, Cengiz; Karatas, Ramazan; Yalçınkaya, Ibrahim. On solutions of the difference equation $x_{n+1}=x_{n-3}/(-1+x_{n}x_{n-1}x_{n-2}x_{n-3})$. Mathematica Bohemica, Tome 132 (2007) no. 3, pp. 257-261. doi : 10.21136/MB.2007.134123. http://geodesic.mathdoc.fr/articles/10.21136/MB.2007.134123/

Cité par Sources :