Precobalanced and cobalanced sequences of modules over domains
Mathematica Bohemica, Tome 132 (2007) no. 1, pp. 35-42.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The class of pure submodules ($\mathcal P$) and torsion-free images ($\mathcal R$) of finite direct sums of submodules of the quotient field of an integral domain were first investigated by M. C. R. Butler for the ring of integers (1965). In this case ${\mathcal P} = {\mathcal R}$ and short exact sequences of such modules are both prebalanced and precobalanced. This does not hold for integral domains in general. In this paper the notion of precobalanced sequences of modules is further investigated. It is shown that as in the case for abelian groups the exact sequence $ 0 \rightarrow M \rightarrow L \rightarrow T \rightarrow 0 $ with torsion $T$ is precobalanced precisely when it is cobalanced and in this case will split if $M$ is torsion-free of rank $1$. It is demonstrated that containment relationships between $\mathcal P$ and $\mathcal R$ for a domain $R$ are intimately related to the issue of when pure submodules of Butler modules are precobalanced. An analogous statement is made regarding the dual question of when torsion-free images of Butler modules are prebalanced.
DOI : 10.21136/MB.2007.133993
Classification : 13C13, 13D99, 13G05, 18A20
Keywords: precobalanced sequence; cobalanced sequence; torsion-free image; pure submodule
@article{10_21136_MB_2007_133993,
     author = {Giovannitti, A. and Goeters, H. P.},
     title = {Precobalanced and cobalanced sequences of modules over domains},
     journal = {Mathematica Bohemica},
     pages = {35--42},
     publisher = {mathdoc},
     volume = {132},
     number = {1},
     year = {2007},
     doi = {10.21136/MB.2007.133993},
     mrnumber = {2311751},
     zbl = {1174.13016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2007.133993/}
}
TY  - JOUR
AU  - Giovannitti, A.
AU  - Goeters, H. P.
TI  - Precobalanced and cobalanced sequences of modules over domains
JO  - Mathematica Bohemica
PY  - 2007
SP  - 35
EP  - 42
VL  - 132
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2007.133993/
DO  - 10.21136/MB.2007.133993
LA  - en
ID  - 10_21136_MB_2007_133993
ER  - 
%0 Journal Article
%A Giovannitti, A.
%A Goeters, H. P.
%T Precobalanced and cobalanced sequences of modules over domains
%J Mathematica Bohemica
%D 2007
%P 35-42
%V 132
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2007.133993/
%R 10.21136/MB.2007.133993
%G en
%F 10_21136_MB_2007_133993
Giovannitti, A.; Goeters, H. P. Precobalanced and cobalanced sequences of modules over domains. Mathematica Bohemica, Tome 132 (2007) no. 1, pp. 35-42. doi : 10.21136/MB.2007.133993. http://geodesic.mathdoc.fr/articles/10.21136/MB.2007.133993/

Cité par Sources :