Semisimplicity and global dimension of a finite von Neumann algebra
Mathematica Bohemica, Tome 132 (2007) no. 1, pp. 13-26.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We prove that a finite von Neumann algebra ${\mathcal{A}}$ is semisimple if the algebra of affiliated operators ${\mathcal{U}}$ of ${\mathcal{A}}$ is semisimple. When ${\mathcal{A}}$ is not semisimple, we give the upper and lower bounds for the global dimensions of ${\mathcal{A}}$ and ${\mathcal{U}}.$ This last result requires the use of the Continuum Hypothesis.
DOI : 10.21136/MB.2007.133990
Classification : 16E10, 16K99, 16W99, 46L10, 46L99
Keywords: finite von Neumann algebra; algebra of affiliated operators; semisimple ring; global dimension
@article{10_21136_MB_2007_133990,
     author = {Va\v{s}, Lia},
     title = {Semisimplicity and global dimension of a finite von {Neumann} algebra},
     journal = {Mathematica Bohemica},
     pages = {13--26},
     publisher = {mathdoc},
     volume = {132},
     number = {1},
     year = {2007},
     doi = {10.21136/MB.2007.133990},
     mrnumber = {2311749},
     zbl = {1171.46317},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2007.133990/}
}
TY  - JOUR
AU  - Vaš, Lia
TI  - Semisimplicity and global dimension of a finite von Neumann algebra
JO  - Mathematica Bohemica
PY  - 2007
SP  - 13
EP  - 26
VL  - 132
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2007.133990/
DO  - 10.21136/MB.2007.133990
LA  - en
ID  - 10_21136_MB_2007_133990
ER  - 
%0 Journal Article
%A Vaš, Lia
%T Semisimplicity and global dimension of a finite von Neumann algebra
%J Mathematica Bohemica
%D 2007
%P 13-26
%V 132
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2007.133990/
%R 10.21136/MB.2007.133990
%G en
%F 10_21136_MB_2007_133990
Vaš, Lia. Semisimplicity and global dimension of a finite von Neumann algebra. Mathematica Bohemica, Tome 132 (2007) no. 1, pp. 13-26. doi : 10.21136/MB.2007.133990. http://geodesic.mathdoc.fr/articles/10.21136/MB.2007.133990/

Cité par Sources :