A note on congruence systems of MS-algebras
Mathematica Bohemica, Tome 132 (2007) no. 4, pp. 337-343.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $L$ be an MS-algebra with congruence permutable skeleton. We prove that solving a system of congruences $(\theta _{1},\ldots ,\theta _{n};x_{1} ,\ldots ,x_{n})$ in $L$ can be reduced to solving the restriction of the system to the skeleton of $L$, plus solving the restrictions of the system to the intervals $[x_{1},\bar{\bar{x}}_{1}],\dots ,[x_{n},\bar{ \bar{x}}_{n}].$
DOI : 10.21136/MB.2007.133963
Classification : 06-02, 06D30
Keywords: MS-algebra; permutable congruence; congruence system
@article{10_21136_MB_2007_133963,
     author = {Campercholi, M. and Vaggione, D.},
     title = {A note on congruence systems of {MS-algebras}},
     journal = {Mathematica Bohemica},
     pages = {337--343},
     publisher = {mathdoc},
     volume = {132},
     number = {4},
     year = {2007},
     doi = {10.21136/MB.2007.133963},
     mrnumber = {2365320},
     zbl = {1174.06312},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2007.133963/}
}
TY  - JOUR
AU  - Campercholi, M.
AU  - Vaggione, D.
TI  - A note on congruence systems of MS-algebras
JO  - Mathematica Bohemica
PY  - 2007
SP  - 337
EP  - 343
VL  - 132
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2007.133963/
DO  - 10.21136/MB.2007.133963
LA  - en
ID  - 10_21136_MB_2007_133963
ER  - 
%0 Journal Article
%A Campercholi, M.
%A Vaggione, D.
%T A note on congruence systems of MS-algebras
%J Mathematica Bohemica
%D 2007
%P 337-343
%V 132
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2007.133963/
%R 10.21136/MB.2007.133963
%G en
%F 10_21136_MB_2007_133963
Campercholi, M.; Vaggione, D. A note on congruence systems of MS-algebras. Mathematica Bohemica, Tome 132 (2007) no. 4, pp. 337-343. doi : 10.21136/MB.2007.133963. http://geodesic.mathdoc.fr/articles/10.21136/MB.2007.133963/

Cité par Sources :