Where are typical $C^{1}$ functions one-to-one?
Mathematica Bohemica, Tome 131 (2006) no. 3, pp. 291-303.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Suppose $F\subset [0,1]$ is closed. Is it true that the typical (in the sense of Baire category) function in $C^{1}[0,1]$ is one-to-one on $F$? If ${\underline{\dim }}_{B}F1/2$ we show that the answer to this question is yes, though we construct an $F$ with $\dim _{B}F=1/2$ for which the answer is no. If $C_{\alpha }$ is the middle-$\alpha $ Cantor set we prove that the answer is yes if and only if $\dim (C_{\alpha })\le 1/2.$ There are $F$’s with Hausdorff dimension one for which the answer is still yes. Some other related results are also presented.
DOI : 10.21136/MB.2006.134143
Classification : 26A15, 28A78, 28A80
Keywords: typical function; box dimension; one-to-one function
@article{10_21136_MB_2006_134143,
     author = {Buczolich, Zolt\'an and M\'ath\'e, Andr\'as},
     title = {Where are typical $C^{1}$ functions one-to-one?},
     journal = {Mathematica Bohemica},
     pages = {291--303},
     publisher = {mathdoc},
     volume = {131},
     number = {3},
     year = {2006},
     doi = {10.21136/MB.2006.134143},
     mrnumber = {2248596},
     zbl = {1112.26002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2006.134143/}
}
TY  - JOUR
AU  - Buczolich, Zoltán
AU  - Máthé, András
TI  - Where are typical $C^{1}$ functions one-to-one?
JO  - Mathematica Bohemica
PY  - 2006
SP  - 291
EP  - 303
VL  - 131
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2006.134143/
DO  - 10.21136/MB.2006.134143
LA  - en
ID  - 10_21136_MB_2006_134143
ER  - 
%0 Journal Article
%A Buczolich, Zoltán
%A Máthé, András
%T Where are typical $C^{1}$ functions one-to-one?
%J Mathematica Bohemica
%D 2006
%P 291-303
%V 131
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2006.134143/
%R 10.21136/MB.2006.134143
%G en
%F 10_21136_MB_2006_134143
Buczolich, Zoltán; Máthé, András. Where are typical $C^{1}$ functions one-to-one?. Mathematica Bohemica, Tome 131 (2006) no. 3, pp. 291-303. doi : 10.21136/MB.2006.134143. http://geodesic.mathdoc.fr/articles/10.21136/MB.2006.134143/

Cité par Sources :