The Henstock-Kurzweil approach to Young integrals with integrators in ${\rm BV}\sb \phi$
Mathematica Bohemica, Tome 131 (2006) no. 3, pp. 233-260.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In 1938, L. C. Young proved that the Moore-Pollard-Stieltjes integral $\int _a^bf\mathrm{d}g$ exists if $f\in \mathop {{\mathrm BV}}_\phi [a,b]$, $g\in \mathop {{\mathrm BV}}_\psi [a,b]$ and $\sum _{n=1}^\infty \phi ^{-1}({1}/{n})\psi ^{-1} ({1}/{n})\infty $. In this note we use the Henstock-Kurzweil approach to handle the above integral defined by Young.
DOI : 10.21136/MB.2006.134138
Classification : 26A21, 26A39, 26A42, 28B15
Keywords: Henstock integral; Stieltjes integral; Young integral; $\phi $-variation
@article{10_21136_MB_2006_134138,
     author = {Varayu, Boonpogkrong and Chew, Tuan Seng},
     title = {The {Henstock-Kurzweil} approach to {Young} integrals with integrators in ${\rm BV}\sb \phi$},
     journal = {Mathematica Bohemica},
     pages = {233--260},
     publisher = {mathdoc},
     volume = {131},
     number = {3},
     year = {2006},
     doi = {10.21136/MB.2006.134138},
     mrnumber = {2248593},
     zbl = {1112.26004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2006.134138/}
}
TY  - JOUR
AU  - Varayu, Boonpogkrong
AU  - Chew, Tuan Seng
TI  - The Henstock-Kurzweil approach to Young integrals with integrators in ${\rm BV}\sb \phi$
JO  - Mathematica Bohemica
PY  - 2006
SP  - 233
EP  - 260
VL  - 131
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2006.134138/
DO  - 10.21136/MB.2006.134138
LA  - en
ID  - 10_21136_MB_2006_134138
ER  - 
%0 Journal Article
%A Varayu, Boonpogkrong
%A Chew, Tuan Seng
%T The Henstock-Kurzweil approach to Young integrals with integrators in ${\rm BV}\sb \phi$
%J Mathematica Bohemica
%D 2006
%P 233-260
%V 131
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2006.134138/
%R 10.21136/MB.2006.134138
%G en
%F 10_21136_MB_2006_134138
Varayu, Boonpogkrong; Chew, Tuan Seng. The Henstock-Kurzweil approach to Young integrals with integrators in ${\rm BV}\sb \phi$. Mathematica Bohemica, Tome 131 (2006) no. 3, pp. 233-260. doi : 10.21136/MB.2006.134138. http://geodesic.mathdoc.fr/articles/10.21136/MB.2006.134138/

Cité par Sources :