Periodic singular problem with quasilinear differential operator
Mathematica Bohemica, Tome 131 (2006) no. 3, pp. 321-336.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We study the singular periodic boundary value problem of the form \[ \left(\phi (u^{\prime })\right)^{\prime }+h(u)u^{\prime }=g(u)+e(t),\quad u(0)=u(T),\quad u^{\prime }(0)=u^{\prime }(T), \] where $\phi \:\mathbb{R}\rightarrow \mathbb{R}$ is an increasing and odd homeomorphism such that $\phi (\mathbb{R})=\mathbb{R},$ $h\in C[0,\infty ),$ $e\in L_1J$ and $g\in C(0,\infty )$ can have a space singularity at $x=0,$ i.e. $\limsup _{x\rightarrow 0+}|g(x)|=\infty $ may hold. We prove new existence results both for the case of an attractive singularity, when $\liminf _{x\rightarrow 0+}g(x)=-\infty ,$ and for the case of a strong repulsive singularity, when $\lim _{x\rightarrow 0+}\int _x^1g(\xi )\hspace{0.56905pt}\text{d}\xi =\infty .$ In the latter case we assume that $\phi (y)=\phi _p(y)=|y|^{p-2}y,$ $p>1,$ is the well-known $p$-Laplacian. Our results extend and complete those obtained recently by Jebelean and Mawhin and by Liu Bing.
DOI : 10.21136/MB.2006.134137
Classification : 34B15, 34B16, 34B18, 34C25
Keywords: singular periodic boundary value problem; positive solution; $\phi $-Laplacian; $p$-Laplacian; attractive singularity; repulsive singularity; strong singularity; lower function; upper function
@article{10_21136_MB_2006_134137,
     author = {Rach\r{u}nkov\'a, Irena and Tvrd\'y, Milan},
     title = {Periodic singular problem with quasilinear differential operator},
     journal = {Mathematica Bohemica},
     pages = {321--336},
     publisher = {mathdoc},
     volume = {131},
     number = {3},
     year = {2006},
     doi = {10.21136/MB.2006.134137},
     mrnumber = {2248598},
     zbl = {1114.34018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2006.134137/}
}
TY  - JOUR
AU  - Rachůnková, Irena
AU  - Tvrdý, Milan
TI  - Periodic singular problem with quasilinear differential operator
JO  - Mathematica Bohemica
PY  - 2006
SP  - 321
EP  - 336
VL  - 131
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2006.134137/
DO  - 10.21136/MB.2006.134137
LA  - en
ID  - 10_21136_MB_2006_134137
ER  - 
%0 Journal Article
%A Rachůnková, Irena
%A Tvrdý, Milan
%T Periodic singular problem with quasilinear differential operator
%J Mathematica Bohemica
%D 2006
%P 321-336
%V 131
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2006.134137/
%R 10.21136/MB.2006.134137
%G en
%F 10_21136_MB_2006_134137
Rachůnková, Irena; Tvrdý, Milan. Periodic singular problem with quasilinear differential operator. Mathematica Bohemica, Tome 131 (2006) no. 3, pp. 321-336. doi : 10.21136/MB.2006.134137. http://geodesic.mathdoc.fr/articles/10.21136/MB.2006.134137/

Cité par Sources :