Continuity in the Alexiewicz norm
Mathematica Bohemica, Tome 131 (2006) no. 2, pp. 189-196.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

If $f$ is a Henstock-Kurzweil integrable function on the real line, the Alexiewicz norm of $f$ is $\Vert f\Vert =\sup _I|\int _I f|$ where the supremum is taken over all intervals $I\subset {\mathbb{R}}$. Define the translation $\tau _x$ by $\tau _xf(y)=f(y-x)$. Then $\Vert \tau _xf-f\Vert $ tends to $0$ as $x$ tends to $0$, i.e., $f$ is continuous in the Alexiewicz norm. For particular functions, $\Vert \tau _xf-f\Vert $ can tend to 0 arbitrarily slowly. In general, $\Vert \tau _xf-f\Vert \ge \mathop {\text{osc}}f|x|$ as $x\rightarrow 0$, where $ \mathop {\text{osc}}f$ is the oscillation of $f$. It is shown that if $F$ is a primitive of $f$ then $\Vert \tau _xF-F\Vert \le \Vert f\Vert |x|$. An example shows that the function $y\mapsto \tau _xF(y)-F(y)$ need not be in $L^1$. However, if $f\in L^1$ then $\Vert \tau _xF-F\Vert _1\le \Vert f\Vert _1|x|$. For a positive weight function $w$ on the real line, necessary and sufficient conditions on $w$ are given so that $\Vert (\tau _xf-f)w\Vert \rightarrow 0$ as $x\rightarrow 0$ whenever $fw$ is Henstock-Kurzweil integrable. Applications are made to the Poisson integral on the disc and half-plane. All of the results also hold with the distributional Denjoy integral, which arises from the completion of the space of Henstock-Kurzweil integrable functions as a subspace of Schwartz distributions.
DOI : 10.21136/MB.2006.134092
Classification : 26A39, 46B99, 46Bxx, 46E30
Keywords: Henstock-Kurzweil integral; Alexiewicz norm; distributional Denjoy integral; Poisson integral
@article{10_21136_MB_2006_134092,
     author = {Talvila, Erik},
     title = {Continuity in the {Alexiewicz} norm},
     journal = {Mathematica Bohemica},
     pages = {189--196},
     publisher = {mathdoc},
     volume = {131},
     number = {2},
     year = {2006},
     doi = {10.21136/MB.2006.134092},
     mrnumber = {2242844},
     zbl = {1112.26011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2006.134092/}
}
TY  - JOUR
AU  - Talvila, Erik
TI  - Continuity in the Alexiewicz norm
JO  - Mathematica Bohemica
PY  - 2006
SP  - 189
EP  - 196
VL  - 131
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2006.134092/
DO  - 10.21136/MB.2006.134092
LA  - en
ID  - 10_21136_MB_2006_134092
ER  - 
%0 Journal Article
%A Talvila, Erik
%T Continuity in the Alexiewicz norm
%J Mathematica Bohemica
%D 2006
%P 189-196
%V 131
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2006.134092/
%R 10.21136/MB.2006.134092
%G en
%F 10_21136_MB_2006_134092
Talvila, Erik. Continuity in the Alexiewicz norm. Mathematica Bohemica, Tome 131 (2006) no. 2, pp. 189-196. doi : 10.21136/MB.2006.134092. http://geodesic.mathdoc.fr/articles/10.21136/MB.2006.134092/

Cité par Sources :