Multipliers for generalized Riemann integrals in the real line
Mathematica Bohemica, Tome 131 (2006) no. 2, pp. 161-166.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We use an elementary method to prove that each $BV$ function is a multiplier for the $C$-integral.
DOI : 10.21136/MB.2006.134090
Classification : 26A39
Keywords: multiplier; $C$-integral; $BV$ function
@article{10_21136_MB_2006_134090,
     author = {Lee, Tuo-Yeong},
     title = {Multipliers for generalized {Riemann} integrals in the real line},
     journal = {Mathematica Bohemica},
     pages = {161--166},
     publisher = {mathdoc},
     volume = {131},
     number = {2},
     year = {2006},
     doi = {10.21136/MB.2006.134090},
     mrnumber = {2242842},
     zbl = {1112.26009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2006.134090/}
}
TY  - JOUR
AU  - Lee, Tuo-Yeong
TI  - Multipliers for generalized Riemann integrals in the real line
JO  - Mathematica Bohemica
PY  - 2006
SP  - 161
EP  - 166
VL  - 131
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2006.134090/
DO  - 10.21136/MB.2006.134090
LA  - en
ID  - 10_21136_MB_2006_134090
ER  - 
%0 Journal Article
%A Lee, Tuo-Yeong
%T Multipliers for generalized Riemann integrals in the real line
%J Mathematica Bohemica
%D 2006
%P 161-166
%V 131
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2006.134090/
%R 10.21136/MB.2006.134090
%G en
%F 10_21136_MB_2006_134090
Lee, Tuo-Yeong. Multipliers for generalized Riemann integrals in the real line. Mathematica Bohemica, Tome 131 (2006) no. 2, pp. 161-166. doi : 10.21136/MB.2006.134090. http://geodesic.mathdoc.fr/articles/10.21136/MB.2006.134090/

Cité par Sources :