Kurzweil-Henstock and Kurzweil-Henstock-Pettis integrability of strongly measurable functions
Mathematica Bohemica, Tome 131 (2006) no. 2, pp. 211-223.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We study the integrability of Banach valued strongly measurable functions defined on $[0,1]$. In case of functions $f$ given by $\sum _{n=1}^{\infty } x_n\chi _{E_n}$, where $x_n $ belong to a Banach space and the sets $E_n$ are Lebesgue measurable and pairwise disjoint subsets of $[0,1]$, there are well known characterizations for the Bochner and for the Pettis integrability of $f$ (cf Musial (1991)). In this paper we give some conditions for the Kurzweil-Henstock and the Kurzweil-Henstock-Pettis integrability of such functions.
DOI : 10.21136/MB.2006.134086
Classification : 26A39, 26A42, 26A45, 28B05
Keywords: Kurzweil-Henstock integral; Kurzweil-Henstock-Pettis integral; Pettis integral
@article{10_21136_MB_2006_134086,
     author = {Bongiorno, B. and Di Piazza, Luisa and Musia{\l}, K.},
     title = {Kurzweil-Henstock and {Kurzweil-Henstock-Pettis} integrability of strongly measurable functions},
     journal = {Mathematica Bohemica},
     pages = {211--223},
     publisher = {mathdoc},
     volume = {131},
     number = {2},
     year = {2006},
     doi = {10.21136/MB.2006.134086},
     mrnumber = {2242846},
     zbl = {1112.26015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2006.134086/}
}
TY  - JOUR
AU  - Bongiorno, B.
AU  - Di Piazza, Luisa
AU  - Musiał, K.
TI  - Kurzweil-Henstock and Kurzweil-Henstock-Pettis integrability of strongly measurable functions
JO  - Mathematica Bohemica
PY  - 2006
SP  - 211
EP  - 223
VL  - 131
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2006.134086/
DO  - 10.21136/MB.2006.134086
LA  - en
ID  - 10_21136_MB_2006_134086
ER  - 
%0 Journal Article
%A Bongiorno, B.
%A Di Piazza, Luisa
%A Musiał, K.
%T Kurzweil-Henstock and Kurzweil-Henstock-Pettis integrability of strongly measurable functions
%J Mathematica Bohemica
%D 2006
%P 211-223
%V 131
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2006.134086/
%R 10.21136/MB.2006.134086
%G en
%F 10_21136_MB_2006_134086
Bongiorno, B.; Di Piazza, Luisa; Musiał, K. Kurzweil-Henstock and Kurzweil-Henstock-Pettis integrability of strongly measurable functions. Mathematica Bohemica, Tome 131 (2006) no. 2, pp. 211-223. doi : 10.21136/MB.2006.134086. http://geodesic.mathdoc.fr/articles/10.21136/MB.2006.134086/

Cité par Sources :