On the algebra of $A^k$-functions
Mathematica Bohemica, Tome 131 (2006) no. 1, pp. 49-61.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

For a domain $\Omega \subset {\mathbb{C}}^n$ let $H(\Omega )$ be the holomorphic functions on $\Omega $ and for any $k\in \mathbb{N}$ let $A^k(\Omega )=H(\Omega )\cap C^k(\overline{\Omega })$. Denote by ${\mathcal{A}}_D^k(\Omega )$ the set of functions $f\: \Omega \rightarrow [0,\infty )$ with the property that there exists a sequence of functions $f_j\in A^k(\Omega )$ such that $\lbrace |f_j|\rbrace $ is a nonincreasing sequence and such that $ f(z)=\lim _{j\rightarrow \infty }|f_j(z)|$. By ${\mathcal{A}}_I^k(\Omega )$ denote the set of functions $f\: \Omega \rightarrow (0,\infty )$ with the property that there exists a sequence of functions $f_j\in A^k(\Omega )$ such that $\lbrace |f_j|\rbrace $ is a nondecreasing sequence and such that $ f(z)=\lim _{j\rightarrow \infty }|f_j(z)|$. Let $k\in \mathbb{N}$ and let $\Omega _1$ and $\Omega _2$ be bounded $A^k$-domains of holomorphy in $\mathbb{C}^{m_1}$ and $\mathbb{C}^{m_2}$ respectively. Let $g_1\in {\mathcal{A}}_D^k(\Omega _1)$, $g_2\in {\mathcal{A}}_I^k(\Omega _1)$ and $h\in {\mathcal{A}}_D^k(\Omega _2)\cap {\mathcal{A}}_I^k(\Omega _2)$. We prove that the domains $\Omega =\left\rbrace (z,w)\in \Omega _1\times \Omega _2\: g_1(z)$ are $A^k$-domains of holomorphy if $\mathop {\mathrm int}\overline{\Omega }=\Omega $. We also prove that under certain assumptions they have a Stein neighbourhood basis and are convex with respect to the class of $A^k$-functions. If these domains in addition have $C^1$-boundary, then we prove that the $A^k$-corona problem can be solved. Furthermore we prove two general theorems concerning the projection on ${\mathbb{C}}^n$ of the spectrum of the algebra $A^k$.
DOI : 10.21136/MB.2006.134082
Classification : 32A38, 32D05, 46J10
Keywords: $A^k$-domains of holomorphy; $A^k$-convexity
@article{10_21136_MB_2006_134082,
     author = {Backlund, Ulf and F\"allstr\"om, Anders},
     title = {On the algebra of $A^k$-functions},
     journal = {Mathematica Bohemica},
     pages = {49--61},
     publisher = {mathdoc},
     volume = {131},
     number = {1},
     year = {2006},
     doi = {10.21136/MB.2006.134082},
     mrnumber = {2211003},
     zbl = {1109.32004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2006.134082/}
}
TY  - JOUR
AU  - Backlund, Ulf
AU  - Fällström, Anders
TI  - On the algebra of $A^k$-functions
JO  - Mathematica Bohemica
PY  - 2006
SP  - 49
EP  - 61
VL  - 131
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2006.134082/
DO  - 10.21136/MB.2006.134082
LA  - en
ID  - 10_21136_MB_2006_134082
ER  - 
%0 Journal Article
%A Backlund, Ulf
%A Fällström, Anders
%T On the algebra of $A^k$-functions
%J Mathematica Bohemica
%D 2006
%P 49-61
%V 131
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2006.134082/
%R 10.21136/MB.2006.134082
%G en
%F 10_21136_MB_2006_134082
Backlund, Ulf; Fällström, Anders. On the algebra of $A^k$-functions. Mathematica Bohemica, Tome 131 (2006) no. 1, pp. 49-61. doi : 10.21136/MB.2006.134082. http://geodesic.mathdoc.fr/articles/10.21136/MB.2006.134082/

Cité par Sources :