Single valued extension property and generalized Weyl’s theorem
Mathematica Bohemica, Tome 131 (2006) no. 1, pp. 29-38.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $T$ be an operator acting on a Banach space $X$, let $\sigma (T)$ and $ \sigma _{BW}(T) $ be respectively the spectrum and the B-Weyl spectrum of $T$. We say that $T$ satisfies the generalized Weyl’s theorem if $ \sigma _{BW}(T)= \sigma (T) \setminus E(T)$, where $E(T)$ is the set of all isolated eigenvalues of $T$. The first goal of this paper is to show that if $T$ is an operator of topological uniform descent and $0$ is an accumulation point of the point spectrum of $T,$ then $T$ does not have the single valued extension property at $0$, extending an earlier result of J. K. Finch and a recent result of Aiena and Monsalve. Our second goal is to give necessary and sufficient conditions under which an operator having the single valued extension property satisfies the generalized Weyl’s theorem.
DOI : 10.21136/MB.2006.134080
Classification : 47A10, 47A53, 47A55
Keywords: single valued extension property; B-Weyl spectrum; generalized Weyl’s theorem
@article{10_21136_MB_2006_134080,
     author = {Berkani, M. and Castro, N. and Djordjevi\'c, S. V.},
     title = {Single valued extension property and generalized {Weyl{\textquoteright}s} theorem},
     journal = {Mathematica Bohemica},
     pages = {29--38},
     publisher = {mathdoc},
     volume = {131},
     number = {1},
     year = {2006},
     doi = {10.21136/MB.2006.134080},
     mrnumber = {2211001},
     zbl = {1114.47015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2006.134080/}
}
TY  - JOUR
AU  - Berkani, M.
AU  - Castro, N.
AU  - Djordjević, S. V.
TI  - Single valued extension property and generalized Weyl’s theorem
JO  - Mathematica Bohemica
PY  - 2006
SP  - 29
EP  - 38
VL  - 131
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2006.134080/
DO  - 10.21136/MB.2006.134080
LA  - en
ID  - 10_21136_MB_2006_134080
ER  - 
%0 Journal Article
%A Berkani, M.
%A Castro, N.
%A Djordjević, S. V.
%T Single valued extension property and generalized Weyl’s theorem
%J Mathematica Bohemica
%D 2006
%P 29-38
%V 131
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2006.134080/
%R 10.21136/MB.2006.134080
%G en
%F 10_21136_MB_2006_134080
Berkani, M.; Castro, N.; Djordjević, S. V. Single valued extension property and generalized Weyl’s theorem. Mathematica Bohemica, Tome 131 (2006) no. 1, pp. 29-38. doi : 10.21136/MB.2006.134080. http://geodesic.mathdoc.fr/articles/10.21136/MB.2006.134080/

Cité par Sources :