Observability of nonlinear systems
Mathematica Bohemica, Tome 131 (2006) no. 4, pp. 411-418.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Observability of a general nonlinear system—given in terms of an ODE $\dot{x}=f(x)$ and an output map $y=c(x)$—is defined as in linear system theory (i.e. if $f(x)=Ax$ and $c(x)=Cx$). In contrast to standard treatment of the subject we present a criterion for observability which is not a generalization of a known linear test. It is obtained by evaluation of “approximate first integrals”. This concept is borrowed from nonlinear control theory where it appears under the label “Dissipation Inequality” and serves as a link with Hamilton-Jacobi theory.
DOI : 10.21136/MB.2006.133974
Classification : 34A34, 34C14, 93B07
Keywords: ordinary differential equations; observability
@article{10_21136_MB_2006_133974,
     author = {Knobloch, H. W.},
     title = {Observability of nonlinear systems},
     journal = {Mathematica Bohemica},
     pages = {411--418},
     publisher = {mathdoc},
     volume = {131},
     number = {4},
     year = {2006},
     doi = {10.21136/MB.2006.133974},
     mrnumber = {2273931},
     zbl = {1109.93013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2006.133974/}
}
TY  - JOUR
AU  - Knobloch, H. W.
TI  - Observability of nonlinear systems
JO  - Mathematica Bohemica
PY  - 2006
SP  - 411
EP  - 418
VL  - 131
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2006.133974/
DO  - 10.21136/MB.2006.133974
LA  - en
ID  - 10_21136_MB_2006_133974
ER  - 
%0 Journal Article
%A Knobloch, H. W.
%T Observability of nonlinear systems
%J Mathematica Bohemica
%D 2006
%P 411-418
%V 131
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2006.133974/
%R 10.21136/MB.2006.133974
%G en
%F 10_21136_MB_2006_133974
Knobloch, H. W. Observability of nonlinear systems. Mathematica Bohemica, Tome 131 (2006) no. 4, pp. 411-418. doi : 10.21136/MB.2006.133974. http://geodesic.mathdoc.fr/articles/10.21136/MB.2006.133974/

Cité par Sources :