Infinite-dimensional complex projective spaces and complete intersections
Mathematica Bohemica, Tome 131 (2006) no. 4, pp. 419-425.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $V$ be an infinite-dimensional complex Banach space and $X \subset {\mathbf {P}}(V)$ a closed analytic subset with finite codimension. We give a condition on $X$ which implies that $X$ is a complete intersection. We conjecture that the result should be true for more general topological vector spaces.
DOI : 10.21136/MB.2006.133969
Classification : 32K05, 58B20
Keywords: infinite-dimensional complex projective space; infinite-dimensional complex manifold; complete intersection; complex Banach space; complex Banach manifold
@article{10_21136_MB_2006_133969,
     author = {Ballico, E.},
     title = {Infinite-dimensional complex projective spaces and complete intersections},
     journal = {Mathematica Bohemica},
     pages = {419--425},
     publisher = {mathdoc},
     volume = {131},
     number = {4},
     year = {2006},
     doi = {10.21136/MB.2006.133969},
     mrnumber = {2273932},
     zbl = {1109.32015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2006.133969/}
}
TY  - JOUR
AU  - Ballico, E.
TI  - Infinite-dimensional complex projective spaces and complete intersections
JO  - Mathematica Bohemica
PY  - 2006
SP  - 419
EP  - 425
VL  - 131
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2006.133969/
DO  - 10.21136/MB.2006.133969
LA  - en
ID  - 10_21136_MB_2006_133969
ER  - 
%0 Journal Article
%A Ballico, E.
%T Infinite-dimensional complex projective spaces and complete intersections
%J Mathematica Bohemica
%D 2006
%P 419-425
%V 131
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2006.133969/
%R 10.21136/MB.2006.133969
%G en
%F 10_21136_MB_2006_133969
Ballico, E. Infinite-dimensional complex projective spaces and complete intersections. Mathematica Bohemica, Tome 131 (2006) no. 4, pp. 419-425. doi : 10.21136/MB.2006.133969. http://geodesic.mathdoc.fr/articles/10.21136/MB.2006.133969/

Cité par Sources :