A Nevanlinna theorem for superharmonic functions on Dirichlet regular Greenian sets
Mathematica Bohemica, Tome 130 (2005) no. 1, pp. 1-18.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A generalization of Nevanlinna’s First Fundamental Theorem to superharmonic functions on Green balls is proved. This enables us to generalize many other theorems, on the behaviour of mean values of superharmonic functions over Green spheres, on the Hausdorff measures of certain sets, on the Riesz measures of superharmonic functions, and on differences of positive superharmonic functions.
DOI : 10.21136/MB.2005.134218
Classification : 30D35, 31B05, 31B10
Keywords: Nevanlinna theorem; superharmonic function; $\delta $-subharmonic function; Riesz measure; mean value
@article{10_21136_MB_2005_134218,
     author = {Watson, Neil A.},
     title = {A {Nevanlinna} theorem for superharmonic functions on {Dirichlet} regular {Greenian} sets},
     journal = {Mathematica Bohemica},
     pages = {1--18},
     publisher = {mathdoc},
     volume = {130},
     number = {1},
     year = {2005},
     doi = {10.21136/MB.2005.134218},
     mrnumber = {2128355},
     zbl = {1136.31305},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2005.134218/}
}
TY  - JOUR
AU  - Watson, Neil A.
TI  - A Nevanlinna theorem for superharmonic functions on Dirichlet regular Greenian sets
JO  - Mathematica Bohemica
PY  - 2005
SP  - 1
EP  - 18
VL  - 130
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2005.134218/
DO  - 10.21136/MB.2005.134218
LA  - en
ID  - 10_21136_MB_2005_134218
ER  - 
%0 Journal Article
%A Watson, Neil A.
%T A Nevanlinna theorem for superharmonic functions on Dirichlet regular Greenian sets
%J Mathematica Bohemica
%D 2005
%P 1-18
%V 130
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2005.134218/
%R 10.21136/MB.2005.134218
%G en
%F 10_21136_MB_2005_134218
Watson, Neil A. A Nevanlinna theorem for superharmonic functions on Dirichlet regular Greenian sets. Mathematica Bohemica, Tome 130 (2005) no. 1, pp. 1-18. doi : 10.21136/MB.2005.134218. http://geodesic.mathdoc.fr/articles/10.21136/MB.2005.134218/

Cité par Sources :