Banach-valued Henstock-Kurzweil integrable functions are McShane integrable on a portion
Mathematica Bohemica, Tome 130 (2005) no. 4, pp. 349-354.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

It is shown that a Banach-valued Henstock-Kurzweil integrable function on an $m$-dimensional compact interval is McShane integrable on a portion of the interval. As a consequence, there exist a non-Perron integrable function $f \: [0,1]^2 \longrightarrow {\mathbb{R}}$ and a continuous function $F \: [0,1]^2 \longrightarrow {\mathbb{R}}$ such that \[ (¶) \int _0^x \bigg \lbrace (¶) \int _0^yf(u,v) \mathrm{d}v \bigg \rbrace \mathrm{d}u = (¶) \int _0^y \bigg \lbrace (¶) \int _0^xf(u,v) \mathrm{d}u \bigg \rbrace \mathrm{d}v = F(x,y) \] for all $(x,y) \in [0,1]^2$.
DOI : 10.21136/MB.2005.134207
Classification : 26A39, 28B05
Keywords: Henstock-Kurzweil integral; McShane integral
@article{10_21136_MB_2005_134207,
     author = {Lee, Tuo-Yeong},
     title = {Banach-valued {Henstock-Kurzweil} integrable functions are {McShane} integrable on a portion},
     journal = {Mathematica Bohemica},
     pages = {349--354},
     publisher = {mathdoc},
     volume = {130},
     number = {4},
     year = {2005},
     doi = {10.21136/MB.2005.134207},
     mrnumber = {2182381},
     zbl = {1112.28008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2005.134207/}
}
TY  - JOUR
AU  - Lee, Tuo-Yeong
TI  - Banach-valued Henstock-Kurzweil integrable functions are McShane integrable on a portion
JO  - Mathematica Bohemica
PY  - 2005
SP  - 349
EP  - 354
VL  - 130
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2005.134207/
DO  - 10.21136/MB.2005.134207
LA  - en
ID  - 10_21136_MB_2005_134207
ER  - 
%0 Journal Article
%A Lee, Tuo-Yeong
%T Banach-valued Henstock-Kurzweil integrable functions are McShane integrable on a portion
%J Mathematica Bohemica
%D 2005
%P 349-354
%V 130
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2005.134207/
%R 10.21136/MB.2005.134207
%G en
%F 10_21136_MB_2005_134207
Lee, Tuo-Yeong. Banach-valued Henstock-Kurzweil integrable functions are McShane integrable on a portion. Mathematica Bohemica, Tome 130 (2005) no. 4, pp. 349-354. doi : 10.21136/MB.2005.134207. http://geodesic.mathdoc.fr/articles/10.21136/MB.2005.134207/

Cité par Sources :