Generalized $F$-semigroups
Mathematica Bohemica, Tome 130 (2005) no. 2, pp. 203-220.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A semigroup $S$ is called a generalized $F$-semigroup if there exists a group congruence on $S$ such that the identity class contains a greatest element with respect to the natural partial order $\le _{S}$ of $S$. Using the concept of an anticone, all partially ordered groups which are epimorphic images of a semigroup $(S,\cdot ,\le _{S})$ are determined. It is shown that a semigroup $S$ is a generalized $F$-semigroup if and only if $S$ contains an anticone, which is a principal order ideal of $(S,\le _{S})$. Also a characterization by means of the structure of the set of idempotents or by the existence of a particular element in $S$ is given. The generalized $F$-semigroups in the following classes are described: monoids, semigroups with zero, trivially ordered semigroups, regular semigroups, bands, inverse semigroups, Clifford semigroups, inflations of semigroups, and strong semilattices of monoids.
DOI : 10.21136/MB.2005.134136
Classification : 06F15, 20M10
Keywords: semigroup; natural partial order; group congruence; anticone; pivot elements; partially ordered groups; principal order ideals
@article{10_21136_MB_2005_134136,
     author = {Giraldes, E. and Marques-Smith, P. and Mitsch, H.},
     title = {Generalized $F$-semigroups},
     journal = {Mathematica Bohemica},
     pages = {203--220},
     publisher = {mathdoc},
     volume = {130},
     number = {2},
     year = {2005},
     doi = {10.21136/MB.2005.134136},
     mrnumber = {2148653},
     zbl = {1111.20050},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2005.134136/}
}
TY  - JOUR
AU  - Giraldes, E.
AU  - Marques-Smith, P.
AU  - Mitsch, H.
TI  - Generalized $F$-semigroups
JO  - Mathematica Bohemica
PY  - 2005
SP  - 203
EP  - 220
VL  - 130
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2005.134136/
DO  - 10.21136/MB.2005.134136
LA  - en
ID  - 10_21136_MB_2005_134136
ER  - 
%0 Journal Article
%A Giraldes, E.
%A Marques-Smith, P.
%A Mitsch, H.
%T Generalized $F$-semigroups
%J Mathematica Bohemica
%D 2005
%P 203-220
%V 130
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2005.134136/
%R 10.21136/MB.2005.134136
%G en
%F 10_21136_MB_2005_134136
Giraldes, E.; Marques-Smith, P.; Mitsch, H. Generalized $F$-semigroups. Mathematica Bohemica, Tome 130 (2005) no. 2, pp. 203-220. doi : 10.21136/MB.2005.134136. http://geodesic.mathdoc.fr/articles/10.21136/MB.2005.134136/

Cité par Sources :