A note on surfaces with radially symmetric nonpositive Gaussian curvature
Mathematica Bohemica, Tome 130 (2005) no. 2, pp. 167-176.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

It is easily seen that the graphs of harmonic conjugate functions (the real and imaginary parts of a holomorphic function) have the same nonpositive Gaussian curvature. The converse to this statement is not as simple. Given two graphs with the same nonpositive Gaussian curvature, when can we conclude that the functions generating their graphs are harmonic? In this paper, we show that given a graph with radially symmetric nonpositive Gaussian curvature in a certain form, there are (up to) four families of harmonic functions whose graphs have this curvature. Moreover, the graphs obtained from these functions are not isometric in general.
DOI : 10.21136/MB.2005.134135
Classification : 35C05, 53A05
Keywords: Gaussian curvature; holomorphic function
@article{10_21136_MB_2005_134135,
     author = {Shomberg, Joseph},
     title = {A note on surfaces with radially symmetric nonpositive {Gaussian} curvature},
     journal = {Mathematica Bohemica},
     pages = {167--176},
     publisher = {mathdoc},
     volume = {130},
     number = {2},
     year = {2005},
     doi = {10.21136/MB.2005.134135},
     mrnumber = {2148650},
     zbl = {1108.53004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2005.134135/}
}
TY  - JOUR
AU  - Shomberg, Joseph
TI  - A note on surfaces with radially symmetric nonpositive Gaussian curvature
JO  - Mathematica Bohemica
PY  - 2005
SP  - 167
EP  - 176
VL  - 130
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2005.134135/
DO  - 10.21136/MB.2005.134135
LA  - en
ID  - 10_21136_MB_2005_134135
ER  - 
%0 Journal Article
%A Shomberg, Joseph
%T A note on surfaces with radially symmetric nonpositive Gaussian curvature
%J Mathematica Bohemica
%D 2005
%P 167-176
%V 130
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2005.134135/
%R 10.21136/MB.2005.134135
%G en
%F 10_21136_MB_2005_134135
Shomberg, Joseph. A note on surfaces with radially symmetric nonpositive Gaussian curvature. Mathematica Bohemica, Tome 130 (2005) no. 2, pp. 167-176. doi : 10.21136/MB.2005.134135. http://geodesic.mathdoc.fr/articles/10.21136/MB.2005.134135/

Cité par Sources :