$I$ and $I^*$-convergence in topological spaces
Mathematica Bohemica, Tome 130 (2005) no. 2, pp. 153-160.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We extend the idea of $I$-convergence and $I^*$-convergence of sequences to a topological space and derive several basic properties of these concepts in the topological space.
DOI : 10.21136/MB.2005.134133
Classification : 40A05, 40A30, 40A99, 54A20
Keywords: $I$-convergence; $I^*$-convergence; condition (AP); $I$-limit point; $I$-cluster point
@article{10_21136_MB_2005_134133,
     author = {Lahiri, B. K. and Das, Pratulananda},
     title = {$I$ and $I^*$-convergence in topological spaces},
     journal = {Mathematica Bohemica},
     pages = {153--160},
     publisher = {mathdoc},
     volume = {130},
     number = {2},
     year = {2005},
     doi = {10.21136/MB.2005.134133},
     mrnumber = {2148648},
     zbl = {1111.40001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2005.134133/}
}
TY  - JOUR
AU  - Lahiri, B. K.
AU  - Das, Pratulananda
TI  - $I$ and $I^*$-convergence in topological spaces
JO  - Mathematica Bohemica
PY  - 2005
SP  - 153
EP  - 160
VL  - 130
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2005.134133/
DO  - 10.21136/MB.2005.134133
LA  - en
ID  - 10_21136_MB_2005_134133
ER  - 
%0 Journal Article
%A Lahiri, B. K.
%A Das, Pratulananda
%T $I$ and $I^*$-convergence in topological spaces
%J Mathematica Bohemica
%D 2005
%P 153-160
%V 130
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2005.134133/
%R 10.21136/MB.2005.134133
%G en
%F 10_21136_MB_2005_134133
Lahiri, B. K.; Das, Pratulananda. $I$ and $I^*$-convergence in topological spaces. Mathematica Bohemica, Tome 130 (2005) no. 2, pp. 153-160. doi : 10.21136/MB.2005.134133. http://geodesic.mathdoc.fr/articles/10.21136/MB.2005.134133/

Cité par Sources :