On holomorphic continuation of functions along boundary sections
Mathematica Bohemica, Tome 130 (2005) no. 3, pp. 309-322.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $D^{\prime } \subset \mathbb{C}^{n-1}$ be a bounded domain of Lyapunov and $f(z^{\prime },z_n)$ a holomorphic function in the cylinder $D=D^{\prime }\times U_n$ and continuous on $\bar{D}$. If for each fixed $a^{\prime }$ in some set $E\subset \partial D^{\prime }$, with positive Lebesgue measure $\text{mes}\,E>0$, the function $f(a^{\prime },z_n)$ of $z_n$ can be continued to a function holomorphic on the whole plane with the exception of some finite number (polar set) of singularities, then $f(z^{\prime },z_n)$ can be holomorphically continued to $(D^{\prime }\times \mathbb{C})\setminus S$, where $S$ is some analytic (closed pluripolar) subset of $D^{\prime }\times \mathbb{C}$.
DOI : 10.21136/MB.2005.134101
Classification : 32D15, 46G20
Keywords: holomorphic function; holomorphic continuation; pluripolar set; pseudoconcave set; Jacobi-Hartogs series
@article{10_21136_MB_2005_134101,
     author = {Imomkulov, S. A. and Khujamov, J. U.},
     title = {On holomorphic continuation of functions along boundary sections},
     journal = {Mathematica Bohemica},
     pages = {309--322},
     publisher = {mathdoc},
     volume = {130},
     number = {3},
     year = {2005},
     doi = {10.21136/MB.2005.134101},
     mrnumber = {2164660},
     zbl = {1113.46038},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2005.134101/}
}
TY  - JOUR
AU  - Imomkulov, S. A.
AU  - Khujamov, J. U.
TI  - On holomorphic continuation of functions along boundary sections
JO  - Mathematica Bohemica
PY  - 2005
SP  - 309
EP  - 322
VL  - 130
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2005.134101/
DO  - 10.21136/MB.2005.134101
LA  - en
ID  - 10_21136_MB_2005_134101
ER  - 
%0 Journal Article
%A Imomkulov, S. A.
%A Khujamov, J. U.
%T On holomorphic continuation of functions along boundary sections
%J Mathematica Bohemica
%D 2005
%P 309-322
%V 130
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2005.134101/
%R 10.21136/MB.2005.134101
%G en
%F 10_21136_MB_2005_134101
Imomkulov, S. A.; Khujamov, J. U. On holomorphic continuation of functions along boundary sections. Mathematica Bohemica, Tome 130 (2005) no. 3, pp. 309-322. doi : 10.21136/MB.2005.134101. http://geodesic.mathdoc.fr/articles/10.21136/MB.2005.134101/

Cité par Sources :