Equivariant mappings from vector product into $G$-space of vectors and $\varepsilon $-vectors with $G=O(n,1,\mathbb{R})$
Mathematica Bohemica, Tome 130 (2005) no. 3, pp. 265-275.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this note all vectors and $\varepsilon $-vectors of a system of $m\le n$ linearly independent contravariant vectors in the $n$-dimensional pseudo-Euclidean geometry of index one are determined. The problem is resolved by finding the general solution of the functional equation $F( A{\underset{1}{\rightarrow }u}, A{\underset{2}{\rightarrow }u},\dots ,A{\underset{m}{\rightarrow }u}) =( \det A)^{\lambda }\cdot A\cdot F( {\underset{1}{\rightarrow }u},{\underset{2}{\rightarrow }u},\dots , {\underset{m}{\rightarrow }u})$ with $\lambda =0$ and $\lambda =1$, for an arbitrary pseudo-orthogonal matrix $A$ of index one and given vectors $ {\underset{1}{\rightarrow }u},{\underset{2}{\rightarrow }u},\dots ,{\underset{m}{\rightarrow }u}.$
DOI : 10.21136/MB.2005.134097
Classification : 22E99, 53A35, 53A55
Keywords: $G$-space; equivariant map; pseudo-Euclidean geometry; functional equation
@article{10_21136_MB_2005_134097,
     author = {Glanc, Barbara and Misiak, Aleksander and Stepie\'n, Zofia},
     title = {Equivariant mappings from vector product into $G$-space of vectors and $\varepsilon $-vectors with $G=O(n,1,\mathbb{R})$},
     journal = {Mathematica Bohemica},
     pages = {265--275},
     publisher = {mathdoc},
     volume = {130},
     number = {3},
     year = {2005},
     doi = {10.21136/MB.2005.134097},
     mrnumber = {2164656},
     zbl = {1108.53009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2005.134097/}
}
TY  - JOUR
AU  - Glanc, Barbara
AU  - Misiak, Aleksander
AU  - Stepień, Zofia
TI  - Equivariant mappings from vector product into $G$-space of vectors and $\varepsilon $-vectors with $G=O(n,1,\mathbb{R})$
JO  - Mathematica Bohemica
PY  - 2005
SP  - 265
EP  - 275
VL  - 130
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2005.134097/
DO  - 10.21136/MB.2005.134097
LA  - en
ID  - 10_21136_MB_2005_134097
ER  - 
%0 Journal Article
%A Glanc, Barbara
%A Misiak, Aleksander
%A Stepień, Zofia
%T Equivariant mappings from vector product into $G$-space of vectors and $\varepsilon $-vectors with $G=O(n,1,\mathbb{R})$
%J Mathematica Bohemica
%D 2005
%P 265-275
%V 130
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2005.134097/
%R 10.21136/MB.2005.134097
%G en
%F 10_21136_MB_2005_134097
Glanc, Barbara; Misiak, Aleksander; Stepień, Zofia. Equivariant mappings from vector product into $G$-space of vectors and $\varepsilon $-vectors with $G=O(n,1,\mathbb{R})$. Mathematica Bohemica, Tome 130 (2005) no. 3, pp. 265-275. doi : 10.21136/MB.2005.134097. http://geodesic.mathdoc.fr/articles/10.21136/MB.2005.134097/

Cité par Sources :