The converse problem for a generalized Dhombres functional equation
Mathematica Bohemica, Tome 130 (2005) no. 3, pp. 301-308.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We consider the functional equation $f(xf(x))=\varphi (f(x))$ where $\varphi \: J\rightarrow J$ is a given homeomorphism of an open interval $J\subset (0,\infty )$ and $f\: (0,\infty ) \rightarrow J$ is an unknown continuous function. A characterization of the class $\mathcal S(J,\varphi )$ of continuous solutions $f$ is given in a series of papers by Kahlig and Smítal 1998–2002, and in a recent paper by Reich et al. 2004, in the case when $\varphi $ is increasing. In the present paper we solve the converse problem, for which continuous maps $f\: (0,\infty )\rightarrow J$, where $J$ is an interval, there is an increasing homeomorphism $\varphi $ of $J$ such that $f\in \mathcal S(J,\varphi )$. We also show why the similar problem for decreasing $\varphi $ is difficult.
DOI : 10.21136/MB.2005.134093
Classification : 26A18, 39B12, 39B22
Keywords: iterative functional equation; equation of invariant curves; general continuous solution; converse problem
@article{10_21136_MB_2005_134093,
     author = {Reich, L. and Sm{\'\i}tal, J. and \v{S}tef\'ankov\'a, M.},
     title = {The converse problem for a generalized {Dhombres} functional equation},
     journal = {Mathematica Bohemica},
     pages = {301--308},
     publisher = {mathdoc},
     volume = {130},
     number = {3},
     year = {2005},
     doi = {10.21136/MB.2005.134093},
     mrnumber = {2164659},
     zbl = {1110.39014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2005.134093/}
}
TY  - JOUR
AU  - Reich, L.
AU  - Smítal, J.
AU  - Štefánková, M.
TI  - The converse problem for a generalized Dhombres functional equation
JO  - Mathematica Bohemica
PY  - 2005
SP  - 301
EP  - 308
VL  - 130
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2005.134093/
DO  - 10.21136/MB.2005.134093
LA  - en
ID  - 10_21136_MB_2005_134093
ER  - 
%0 Journal Article
%A Reich, L.
%A Smítal, J.
%A Štefánková, M.
%T The converse problem for a generalized Dhombres functional equation
%J Mathematica Bohemica
%D 2005
%P 301-308
%V 130
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2005.134093/
%R 10.21136/MB.2005.134093
%G en
%F 10_21136_MB_2005_134093
Reich, L.; Smítal, J.; Štefánková, M. The converse problem for a generalized Dhombres functional equation. Mathematica Bohemica, Tome 130 (2005) no. 3, pp. 301-308. doi : 10.21136/MB.2005.134093. http://geodesic.mathdoc.fr/articles/10.21136/MB.2005.134093/

Cité par Sources :