On the Ward Theorem for $\mathcal{P}$-adic-path bases associated with a bounded sequence
Mathematica Bohemica, Tome 129 (2004) no. 3, pp. 313-323.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper we prove that each differentiation basis associated with a $\mathcal{P}$-adic path system defined by a bounded sequence satisfies the Ward Theorem.
DOI : 10.21136/MB.2004.134152
Classification : 26A39, 26A42, 26A45, 28A12
Keywords: $\mathcal{P}$-adic system; differentiation basis; variational measure; Ward Theorem
@article{10_21136_MB_2004_134152,
     author = {Tulone, F.},
     title = {On the {Ward} {Theorem} for $\mathcal{P}$-adic-path bases associated with a bounded sequence},
     journal = {Mathematica Bohemica},
     pages = {313--323},
     publisher = {mathdoc},
     volume = {129},
     number = {3},
     year = {2004},
     doi = {10.21136/MB.2004.134152},
     mrnumber = {2092717},
     zbl = {1080.26008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2004.134152/}
}
TY  - JOUR
AU  - Tulone, F.
TI  - On the Ward Theorem for $\mathcal{P}$-adic-path bases associated with a bounded sequence
JO  - Mathematica Bohemica
PY  - 2004
SP  - 313
EP  - 323
VL  - 129
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2004.134152/
DO  - 10.21136/MB.2004.134152
LA  - en
ID  - 10_21136_MB_2004_134152
ER  - 
%0 Journal Article
%A Tulone, F.
%T On the Ward Theorem for $\mathcal{P}$-adic-path bases associated with a bounded sequence
%J Mathematica Bohemica
%D 2004
%P 313-323
%V 129
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2004.134152/
%R 10.21136/MB.2004.134152
%G en
%F 10_21136_MB_2004_134152
Tulone, F. On the Ward Theorem for $\mathcal{P}$-adic-path bases associated with a bounded sequence. Mathematica Bohemica, Tome 129 (2004) no. 3, pp. 313-323. doi : 10.21136/MB.2004.134152. http://geodesic.mathdoc.fr/articles/10.21136/MB.2004.134152/

Cité par Sources :