A remark on branch weights in countable trees
Mathematica Bohemica, Tome 129 (2004) no. 1, pp. 29-31.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $T$ be a tree, let $u$ be its vertex. The branch weight $b(u)$ of $u$ is the maximum number of vertices of a branch of $T$ at $u$. The set of vertices $u$ of $T$ in which $b(u)$ attains its minimum is the branch weight centroid $B(T)$ of $T$. For finite trees the present author proved that $B(T)$ coincides with the median of $T$, therefore it consists of one vertex or of two adjacent vertices. In this paper we show that for infinite countable trees the situation is quite different.
DOI : 10.21136/MB.2004.134108
Classification : 05C05
Keywords: branch weight; branch weight centroid; tree; path; degree of a vertex
@article{10_21136_MB_2004_134108,
     author = {Zelinka, Bohdan},
     title = {A remark on branch weights in countable trees},
     journal = {Mathematica Bohemica},
     pages = {29--31},
     publisher = {mathdoc},
     volume = {129},
     number = {1},
     year = {2004},
     doi = {10.21136/MB.2004.134108},
     mrnumber = {2048784},
     zbl = {1050.05028},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2004.134108/}
}
TY  - JOUR
AU  - Zelinka, Bohdan
TI  - A remark on branch weights in countable trees
JO  - Mathematica Bohemica
PY  - 2004
SP  - 29
EP  - 31
VL  - 129
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2004.134108/
DO  - 10.21136/MB.2004.134108
LA  - en
ID  - 10_21136_MB_2004_134108
ER  - 
%0 Journal Article
%A Zelinka, Bohdan
%T A remark on branch weights in countable trees
%J Mathematica Bohemica
%D 2004
%P 29-31
%V 129
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2004.134108/
%R 10.21136/MB.2004.134108
%G en
%F 10_21136_MB_2004_134108
Zelinka, Bohdan. A remark on branch weights in countable trees. Mathematica Bohemica, Tome 129 (2004) no. 1, pp. 29-31. doi : 10.21136/MB.2004.134108. http://geodesic.mathdoc.fr/articles/10.21136/MB.2004.134108/

Cité par Sources :