Basic subgroups in commutative modular group rings
Mathematica Bohemica, Tome 129 (2004) no. 1, pp. 79-90.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $S(RG)$ be a normed Sylow $p$-subgroup in a group ring $RG$ of an abelian group $G$ with $p$-component $G_p$ and a $p$-basic subgroup $B$ over a commutative unitary ring $R$ with prime characteristic $p$. The first central result is that $1+I(RG; B_p) + I(R(p^i)G; G)$ is basic in $S(RG)$ and $B[1+I(RG; B_p) + I(R(p^i)G; G)]$ is $p$-basic in $V(RG)$, and $[1+I(RG; B_p) + I(R(p^i)G; G)]G_p/G_p$ is basic in $S(RG)/G_p$ and $[1+I(RG; B_p) + I(R(p^i)G; G)]G/G$ is $p$-basic in $V(RG)/G$, provided in both cases $G/G_p$ is $p$-divisible and $R$ is such that its maximal perfect subring $R^{p^i}$ has no nilpotents whenever $i$ is natural. The second major result is that $B(1+I(RG; B_p))$ is $p$-basic in $V(RG)$ and $(1+I(RG; B_p))G/G$ is $p$-basic in $V(RG)/G$, provided $G/G_p$ is $p$-divisible and $R$ is perfect. In particular, under these circumstances, $S(RG)$ and $S(RG)/G_p$ are both starred or algebraically compact groups. The last results offer a new perspective on the long-standing classical conjecture which says that $S(RG)/G_p$ is totally projective. The present facts improve the results concerning this topic due to Nachev (Houston J. Math., 1996) and others obtained by us in (C. R. Acad. Bulg. Sci., 1995) and (Czechoslovak Math. J., 2002).
DOI : 10.21136/MB.2004.134103
Classification : 16S34, 16U60, 20C07, 20E07, 20K10, 20K20, 20K21
Keywords: perfect rings; Abelian $p$-groups; groups of normalized units; group rings; basic subgroups
@article{10_21136_MB_2004_134103,
     author = {Danchev, Peter V.},
     title = {Basic subgroups in commutative modular group rings},
     journal = {Mathematica Bohemica},
     pages = {79--90},
     publisher = {mathdoc},
     volume = {129},
     number = {1},
     year = {2004},
     doi = {10.21136/MB.2004.134103},
     mrnumber = {2048788},
     zbl = {1057.16028},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2004.134103/}
}
TY  - JOUR
AU  - Danchev, Peter V.
TI  - Basic subgroups in commutative modular group rings
JO  - Mathematica Bohemica
PY  - 2004
SP  - 79
EP  - 90
VL  - 129
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2004.134103/
DO  - 10.21136/MB.2004.134103
LA  - en
ID  - 10_21136_MB_2004_134103
ER  - 
%0 Journal Article
%A Danchev, Peter V.
%T Basic subgroups in commutative modular group rings
%J Mathematica Bohemica
%D 2004
%P 79-90
%V 129
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2004.134103/
%R 10.21136/MB.2004.134103
%G en
%F 10_21136_MB_2004_134103
Danchev, Peter V. Basic subgroups in commutative modular group rings. Mathematica Bohemica, Tome 129 (2004) no. 1, pp. 79-90. doi : 10.21136/MB.2004.134103. http://geodesic.mathdoc.fr/articles/10.21136/MB.2004.134103/

Cité par Sources :