Radius-invariant graphs
Mathematica Bohemica, Tome 129 (2004) no. 4, pp. 361-377.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The eccentricity $e(v)$ of a vertex $v$ is defined as the distance to a farthest vertex from $v$. The radius of a graph $G$ is defined as a $r(G)=\min _{u \in V(G)}\lbrace e(u)\rbrace $. A graph $G$ is radius-edge-invariant if $r(G-e)=r(G)$ for every $e \in E(G)$, radius-vertex-invariant if $r(G-v)= r(G)$ for every $v \in V(G)$ and radius-adding-invariant if $r(G+e)=r(G)$ for every $e \in E(\overline{G})$. Such classes of graphs are studied in this paper.
DOI : 10.21136/MB.2004.134047
Classification : 05C12, 05C35, 05C75
Keywords: radius of graph; radius-invariant graphs
@article{10_21136_MB_2004_134047,
     author = {B\'alint, V. and Vacek, O.},
     title = {Radius-invariant graphs},
     journal = {Mathematica Bohemica},
     pages = {361--377},
     publisher = {mathdoc},
     volume = {129},
     number = {4},
     year = {2004},
     doi = {10.21136/MB.2004.134047},
     mrnumber = {2102610},
     zbl = {1080.05505},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2004.134047/}
}
TY  - JOUR
AU  - Bálint, V.
AU  - Vacek, O.
TI  - Radius-invariant graphs
JO  - Mathematica Bohemica
PY  - 2004
SP  - 361
EP  - 377
VL  - 129
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2004.134047/
DO  - 10.21136/MB.2004.134047
LA  - en
ID  - 10_21136_MB_2004_134047
ER  - 
%0 Journal Article
%A Bálint, V.
%A Vacek, O.
%T Radius-invariant graphs
%J Mathematica Bohemica
%D 2004
%P 361-377
%V 129
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2004.134047/
%R 10.21136/MB.2004.134047
%G en
%F 10_21136_MB_2004_134047
Bálint, V.; Vacek, O. Radius-invariant graphs. Mathematica Bohemica, Tome 129 (2004) no. 4, pp. 361-377. doi : 10.21136/MB.2004.134047. http://geodesic.mathdoc.fr/articles/10.21136/MB.2004.134047/

Cité par Sources :