Dynamics of dianalytic transformations of Klein surfaces
Mathematica Bohemica, Tome 129 (2004) no. 2, pp. 129-140.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

This paper is an introduction to dynamics of dianalytic self-maps of nonorientable Klein surfaces. The main theorem asserts that dianalytic dynamics on Klein surfaces can be canonically reduced to dynamics of some classes of analytic self-maps on their orientable double covers. A complete list of those maps is given in the case where the respective Klein surfaces are the real projective plane, the pointed real projective plane and the Klein bottle.
DOI : 10.21136/MB.2004.133904
Classification : 30F50, 37F10, 37F50
Keywords: nonorientable Klein surface; dianalytic self-map; Julia set; Fatou set; dianalytic dynamics
@article{10_21136_MB_2004_133904,
     author = {Barza, Ilie and Ghisa, Dorin},
     title = {Dynamics of dianalytic transformations of {Klein} surfaces},
     journal = {Mathematica Bohemica},
     pages = {129--140},
     publisher = {mathdoc},
     volume = {129},
     number = {2},
     year = {2004},
     doi = {10.21136/MB.2004.133904},
     mrnumber = {2073510},
     zbl = {1051.30040},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2004.133904/}
}
TY  - JOUR
AU  - Barza, Ilie
AU  - Ghisa, Dorin
TI  - Dynamics of dianalytic transformations of Klein surfaces
JO  - Mathematica Bohemica
PY  - 2004
SP  - 129
EP  - 140
VL  - 129
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2004.133904/
DO  - 10.21136/MB.2004.133904
LA  - en
ID  - 10_21136_MB_2004_133904
ER  - 
%0 Journal Article
%A Barza, Ilie
%A Ghisa, Dorin
%T Dynamics of dianalytic transformations of Klein surfaces
%J Mathematica Bohemica
%D 2004
%P 129-140
%V 129
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2004.133904/
%R 10.21136/MB.2004.133904
%G en
%F 10_21136_MB_2004_133904
Barza, Ilie; Ghisa, Dorin. Dynamics of dianalytic transformations of Klein surfaces. Mathematica Bohemica, Tome 129 (2004) no. 2, pp. 129-140. doi : 10.21136/MB.2004.133904. http://geodesic.mathdoc.fr/articles/10.21136/MB.2004.133904/

Cité par Sources :