McShane equi-integrability and Vitali’s convergence theorem
Mathematica Bohemica, Tome 129 (2004) no. 2, pp. 141-157.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The McShane integral of functions $f\:I\rightarrow \mathbb{R}$ defined on an $m$-dimensional interval $I$ is considered in the paper. This integral is known to be equivalent to the Lebesgue integral for which the Vitali convergence theorem holds. For McShane integrable sequences of functions a convergence theorem based on the concept of equi-integrability is proved and it is shown that this theorem is equivalent to the Vitali convergence theorem.
DOI : 10.21136/MB.2004.133903
Classification : 26A39, 26B99
Keywords: McShane integral; Vitali convergence theorem; equi-integrability
@article{10_21136_MB_2004_133903,
     author = {Kurzweil, Jaroslav and Schwabik, \v{S}tefan},
     title = {McShane equi-integrability and {Vitali{\textquoteright}s} convergence theorem},
     journal = {Mathematica Bohemica},
     pages = {141--157},
     publisher = {mathdoc},
     volume = {129},
     number = {2},
     year = {2004},
     doi = {10.21136/MB.2004.133903},
     mrnumber = {2073511},
     zbl = {1051.26012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2004.133903/}
}
TY  - JOUR
AU  - Kurzweil, Jaroslav
AU  - Schwabik, Štefan
TI  - McShane equi-integrability and Vitali’s convergence theorem
JO  - Mathematica Bohemica
PY  - 2004
SP  - 141
EP  - 157
VL  - 129
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2004.133903/
DO  - 10.21136/MB.2004.133903
LA  - en
ID  - 10_21136_MB_2004_133903
ER  - 
%0 Journal Article
%A Kurzweil, Jaroslav
%A Schwabik, Štefan
%T McShane equi-integrability and Vitali’s convergence theorem
%J Mathematica Bohemica
%D 2004
%P 141-157
%V 129
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2004.133903/
%R 10.21136/MB.2004.133903
%G en
%F 10_21136_MB_2004_133903
Kurzweil, Jaroslav; Schwabik, Štefan. McShane equi-integrability and Vitali’s convergence theorem. Mathematica Bohemica, Tome 129 (2004) no. 2, pp. 141-157. doi : 10.21136/MB.2004.133903. http://geodesic.mathdoc.fr/articles/10.21136/MB.2004.133903/

Cité par Sources :