On some properties of solutions of quasilinear degenerate parabolic equations in $\mathbb R^m \times (0, + \infty )$
Mathematica Bohemica, Tome 129 (2004) no. 2, pp. 113-123.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We study the asymptotic behaviour near infinity of the weak solutions of the Cauchy-problem.
DOI : 10.21136/MB.2004.133902
Classification : 35B40, 35K55, 35K65
Keywords: weak subsolution; degenerate equation; unbounded domain; asymptotic behaviour
@article{10_21136_MB_2004_133902,
     author = {Bonafede, Salvatore and Nicolosi, Francesco},
     title = {On some properties of solutions of quasilinear degenerate parabolic equations in $\mathbb R^m \times (0, + \infty )$},
     journal = {Mathematica Bohemica},
     pages = {113--123},
     publisher = {mathdoc},
     volume = {129},
     number = {2},
     year = {2004},
     doi = {10.21136/MB.2004.133902},
     mrnumber = {2073508},
     zbl = {1115.35071},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2004.133902/}
}
TY  - JOUR
AU  - Bonafede, Salvatore
AU  - Nicolosi, Francesco
TI  - On some properties of solutions of quasilinear degenerate parabolic equations in $\mathbb R^m \times (0, + \infty )$
JO  - Mathematica Bohemica
PY  - 2004
SP  - 113
EP  - 123
VL  - 129
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2004.133902/
DO  - 10.21136/MB.2004.133902
LA  - en
ID  - 10_21136_MB_2004_133902
ER  - 
%0 Journal Article
%A Bonafede, Salvatore
%A Nicolosi, Francesco
%T On some properties of solutions of quasilinear degenerate parabolic equations in $\mathbb R^m \times (0, + \infty )$
%J Mathematica Bohemica
%D 2004
%P 113-123
%V 129
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2004.133902/
%R 10.21136/MB.2004.133902
%G en
%F 10_21136_MB_2004_133902
Bonafede, Salvatore; Nicolosi, Francesco. On some properties of solutions of quasilinear degenerate parabolic equations in $\mathbb R^m \times (0, + \infty )$. Mathematica Bohemica, Tome 129 (2004) no. 2, pp. 113-123. doi : 10.21136/MB.2004.133902. http://geodesic.mathdoc.fr/articles/10.21136/MB.2004.133902/

Cité par Sources :