Multipliers of spaces of derivatives
Mathematica Bohemica, Tome 129 (2004) no. 2, pp. 181-217.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

For subspaces, $X$ and $Y$, of the space, $D$, of all derivatives $M(X,Y)$ denotes the set of all $g\in D$ such that $fg \in Y$ for all $f \in X$. Subspaces of $D$ are defined depending on a parameter $p \in [0,\infty ]$. In Section 6, $M(X,D)$ is determined for each of these subspaces and in Section 7, $M(X,Y)$ is found for $X$ and $Y$ any of these subspaces. In Section 3, $M(X,D)$ is determined for other spaces of functions on $[0,1]$ related to continuity and higher order differentiation.
DOI : 10.21136/MB.2004.133900
Classification : 26A21, 26A24, 47B37, 47B38
Keywords: spaces of derivatives; Peano derivatives; Lipschitz function; multiplication operator
@article{10_21136_MB_2004_133900,
     author = {Ma\v{r}{\'\i}k, Jan and Weil, Clifford E.},
     title = {Multipliers of spaces of derivatives},
     journal = {Mathematica Bohemica},
     pages = {181--217},
     publisher = {mathdoc},
     volume = {129},
     number = {2},
     year = {2004},
     doi = {10.21136/MB.2004.133900},
     mrnumber = {2073514},
     zbl = {1051.26003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2004.133900/}
}
TY  - JOUR
AU  - Mařík, Jan
AU  - Weil, Clifford E.
TI  - Multipliers of spaces of derivatives
JO  - Mathematica Bohemica
PY  - 2004
SP  - 181
EP  - 217
VL  - 129
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2004.133900/
DO  - 10.21136/MB.2004.133900
LA  - en
ID  - 10_21136_MB_2004_133900
ER  - 
%0 Journal Article
%A Mařík, Jan
%A Weil, Clifford E.
%T Multipliers of spaces of derivatives
%J Mathematica Bohemica
%D 2004
%P 181-217
%V 129
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2004.133900/
%R 10.21136/MB.2004.133900
%G en
%F 10_21136_MB_2004_133900
Mařík, Jan; Weil, Clifford E. Multipliers of spaces of derivatives. Mathematica Bohemica, Tome 129 (2004) no. 2, pp. 181-217. doi : 10.21136/MB.2004.133900. http://geodesic.mathdoc.fr/articles/10.21136/MB.2004.133900/

Cité par Sources :