Generalized deductive systems in subregular varieties
Mathematica Bohemica, Tome 128 (2003) no. 3, pp. 319-324.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

An algebra ${\mathcal A}= (A,F)$ is subregular alias regular with respect to a unary term function $g$ if for each $\Theta , \Phi \in \text{Con}\,{\mathcal A}$ we have $\Theta = \Phi $ whenever $[g(a)]_{\Theta } = [g(a)]_{\Phi }$ for each $a\in A$. We borrow the concept of a deductive system from logic to modify it for subregular algebras. Using it we show that a subset $C\subseteq A$ is a class of some congruence on $\Theta $ containing $g(a)$ if and only if $C$ is this generalized deductive system. This method is efficient (needs a finite number of steps).
DOI : 10.21136/MB.2003.134184
Classification : 03B22, 08A30, 08B05
Keywords: regular variety; subregular variety; deductive system; congruence class; difference system
@article{10_21136_MB_2003_134184,
     author = {Chajda, Ivan},
     title = {Generalized deductive systems in subregular varieties},
     journal = {Mathematica Bohemica},
     pages = {319--324},
     publisher = {mathdoc},
     volume = {128},
     number = {3},
     year = {2003},
     doi = {10.21136/MB.2003.134184},
     mrnumber = {2012608},
     zbl = {1051.08002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2003.134184/}
}
TY  - JOUR
AU  - Chajda, Ivan
TI  - Generalized deductive systems in subregular varieties
JO  - Mathematica Bohemica
PY  - 2003
SP  - 319
EP  - 324
VL  - 128
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2003.134184/
DO  - 10.21136/MB.2003.134184
LA  - en
ID  - 10_21136_MB_2003_134184
ER  - 
%0 Journal Article
%A Chajda, Ivan
%T Generalized deductive systems in subregular varieties
%J Mathematica Bohemica
%D 2003
%P 319-324
%V 128
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2003.134184/
%R 10.21136/MB.2003.134184
%G en
%F 10_21136_MB_2003_134184
Chajda, Ivan. Generalized deductive systems in subregular varieties. Mathematica Bohemica, Tome 128 (2003) no. 3, pp. 319-324. doi : 10.21136/MB.2003.134184. http://geodesic.mathdoc.fr/articles/10.21136/MB.2003.134184/

Cité par Sources :